How Important is Health Inequality for Lifetime Earnings Inequality?

Roozbeh Hosseini

University of Georgia and FRB Atlanta*

Karen Kopecky

Kai Zhao

FRB Atlanta* and Emory University

University of Connecticut

CIRANO-CIREQ-RSI-CREEi 2022 Workshop on the Economics of Ageing April 2022

*The views expressed do not necessarily reflect the position of the Federal Reserve Bank of Atlanta or the Federal Reserve System.

Introduction

- Poor health impacts individuals through several channels:

reduces labor productivity

increases costs of working, mortality risk, medical expenses

increases chance of access to social insurance programs (SSDI/SSI)

Introduction

- Poor health impacts individuals through several channels:

reduces labor productivity

increases costs of working, mortality risk, medical expenses increases chance of access to social insurance programs (SSDI/SSI)

- Individuals in poor health have lower earnings and labor supply

Introduction

- Poor health impacts individuals through several channels:

reduces labor productivity

increases costs of working, mortality risk, medical expenses increases chance of access to social insurance programs (SSDI/SSI)

- Individuals in poor health have lower earnings and labor supply
- Question: How important is health inequality for lifetime earnings inequality?
- What are key channels?

availability/generosity of Soc Ins - vs - higher costs/lower productivity of work

▶ graph

1. Construct an objective measure of "health"

- frailty index: cumulative sum of past adverse health events

1. Construct an objective measure of "health"

- frailty index: cumulative sum of past adverse health events
- 2. Empirical Analysis: dynamic panel estimation using PSID data
 - estimate effect of health on current earnings
 - assess impact of health on each margin: hours, wages, participation

1. Construct an objective measure of "health"

- frailty index: cumulative sum of past adverse health events
- 2. Empirical Analysis: dynamic panel estimation using PSID data
 - estimate effect of health on current earnings \leftarrow large
 - assess impact of health on each margin: hours, wages, participation \leftarrow participation

- 1. Construct an objective measure of "health"
 - frailty index: cumulative sum of past adverse health events
- 2. Empirical Analysis: dynamic panel estimation using PSID data
 - estimate effect of health on current earnings \leftarrow large
 - assess impact of health on each margin: hours, wages, participation \leftarrow participation
- 3. Quantitative Analysis: structural model consistent with empirical findings
 - agents in the model have heterogeneous and risky health profiles
 - use model to assess

impact of health inequality on lifetime earnings inequality

relative importance of each channel through which health operates

Hosseini, Kopecky, and Zhao

- 1. Construct an objective measure of "health"
 - frailty index: cumulative sum of past adverse health events
- 2. Empirical Analysis: dynamic panel estimation using PSID data
 - estimate effect of health on current earnings \leftarrow large
 - assess impact of health on each margin: hours, wages, participation \leftarrow participation
- 3. Quantitative Analysis: structural model consistent with empirical findings
 - Find:
 - health inequality accounts for 30% of lifetime earnings inequality at age 65
 - 2/3 of which is due to the SSDI/SSI programs
 - yet, SSDI/SSI is ex-ante welfare improving

How Important is Health Inequality for Lifetime Earnings Inequality?

related lit

Plan of the Talk

How we measure health

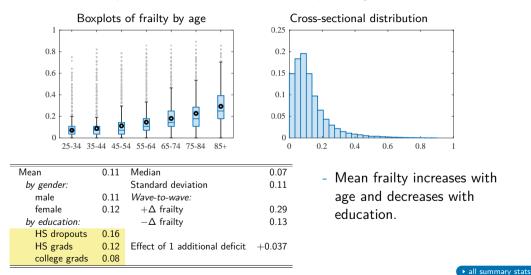
Empirical Analysis

Structural Model

Calibration Highlights

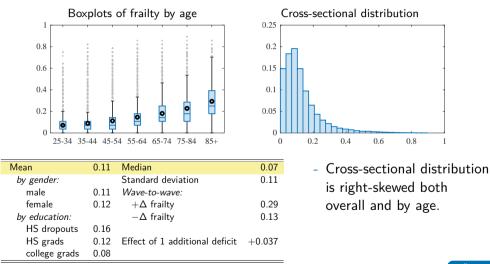
Quantitative Exercise

How we measure health


- **Frailty index**: cumulative sum of all adverse health events (*deficits*)
 - Proposed and widely used in gerontology literature.
- Type of deficit variables used to construct frailty index in PSID:
 - Difficulties with ADL and IADL (eating, dressing, using phone, etc)
 - Diagnosis (ever had heart disease, psychological problems, loss of memory, etc)
 - Body measurements (BMI over 30, etc)
- Assign value of 1 whenever one of these conditions exists, and value of 0 o/w.
- Add them up and normalize to a number between 0 and 1.

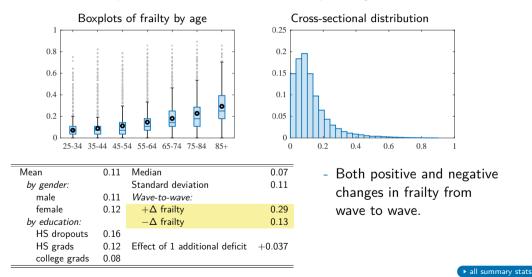
Why frailty

gerontology literature


Summary Stats for Frailty

Sample: 2003–2017 PSID household heads + spouses, ages 25–94

Summary Stats for Frailty


Sample: 2003–2017 PSID household heads + spouses, ages 25–94

all summary stats

Summary Stats for Frailty

Sample: 2003–2017 PSID household heads + spouses, ages 25–94

Plan of the Talk

How we measure health

Empirical Analysis

Structural Model

Calibration Highlights

Quantitative Exercise

Empirical Analysis: Question

- What is the effect of health measured by frailty on earnings/hours/wages?
- We estimate the following regression

$$y_{i,t} = b_i + \gamma f_{i,t} + \alpha_1 y_{i,t-1} + \alpha_2 y_{i,t-2} + \delta \mathbf{Z}_{i,t} + \varepsilon_{i,t}$$

using Blundell-Bond System GMM estimator and PSID sample (ages 25-64)

 $y_{i,t}$ is log of earnings (or hours, or wages) $Z_{i,t}$ is vector of exogenous controls: marital status, marital status×gender, # of kids, # of kids×gender, cubic in age, and year dummies

Empirical Analysis: Question

- What is the effect of health measured by frailty on earnings/hours/wages?
- We estimate the following regression

$$y_{i,t} = b_i + \gamma f_{i,t} + \alpha_1 y_{i,t-1} + \alpha_2 y_{i,t-2} + \delta \mathbf{Z}_{i,t} + \varepsilon_{i,t}$$

using Blundell-Bond System GMM estimator and PSID sample (ages 25-64)

 $y_{i,t}$ is log of earnings (or hours, or wages)

 $Z_{i,t}$ is vector of exogenous controls: marital status, marital status×gender, # of kids, # of kids×gender, cubic in age, and year dummies

- Why dynamic panel?
 - Want fixed effects to control for unobserved heterogeneity.
 - Earnings and frailty are both highly persistent variables.
 - Concerns of endogeneity/simultaneity.

Empirical Analysis: Question

- What is the effect of health measured by frailty on earnings/hours/wages?
- We estimate the following regression

$$y_{i,t} = b_i + \gamma f_{i,t} + \alpha_1 y_{i,t-1} + \alpha_2 y_{i,t-2} + \delta \mathbf{Z}_{i,t} + \varepsilon_{i,t}$$

using Blundell-Bond System GMM estimator and PSID sample (ages 25-64)

 $y_{i,t}$ is log of earnings (or hours, or wages) $Z_{i,t}$ is vector of exogenous controls: marital status, marital status×gender, # of kids, # of kids×gender, cubic in age, and year dummies

- Report $\gamma/27$: response of earnings/hours to one more deficit.

Effect of Frailty on Earnings

		Everyo	ne		Worke	rs
	(1)	(2)	(3)	(4)	(5)	(6)
$\log(earnings_{t-1})$	0.283 (0.364)					
$\log(earnings_{t-2})$	0.396 (0.298)					
$frailty_t$	-0.199^{*} (0.061)					

AR(1) test (p-value)	0.455	
AR(2) test (p-value)	0.380	
Hansen test (p-value)	0.796	
Diff-in-Hansen test (<i>p</i> -value)	0.652	
Note:		$^{*}p < 0.1; \ ^{**}p < 0.05; \ ^{***}p < 0.01$

Hosseini, Kopecky, and Zhao

Effect of Frailty on Earnings

		Everyone			Workers	;
	(1)	(2)	(3)	(4)	(5)	(6)
$\log(earnings_{t-1})$	0.283 (0.364)	0.370 (0.319)	0.220 (0.362)			
$\log(earnings_{t-2})$	0.396 (0.298)	0.318 (0.259)	0.444 (0.297)			
frailty _t	-0.199^{***} (0.061)					
$frailty_t \times HSD$		-0.232** (0.066)				
$frailty_t \times HSG$		-0.207*** (0.058)				
$frailty_t \times CG$		-0.093* (0.052)				
$frailty_t \times Bad \; Health$			-0.193*** (0.065)			
$frailty_t \times Good \; Health$			-0.071 (0.178)			
AR(1) test (p-value)	0.455	0.319	0.497			
AR(2) test (p-value)	0.380	0.474	0.298			
Hansen test (<i>p</i> -value) Diff-in-Hansen test (<i>p</i> -value)	0.796 0.652	0.132 0.360	0.826 0.827			

Concentrated in less educated and those in bad health

Note:

 $^{*}p < 0.1; \ ^{**}p < 0.05; \ ^{***}p < 0.01$

Effect of Frailty on Earnings

		Everyone		Workers			
	(1)	(2)	(3)	(4)	(5)	(6)	
$\log(earnings_{t-1})$	0.283 (0.364)	0.370 (0.319)	0.220 (0.362)	1.474*** (0.509)	1.371*** (0.400)	1.293*** (0.410)	
$\log(earnings_{t-2})$	0.396 (0.298)	0.318 (0.259)	0.444 (0.297)	- 0.640 (0.454)	—0.569 (0.356)	-0.498 (0.377)	
frailty _t	-0.199^{***} (0.061)			- 0.036** (0.017)			
$frailty_t \times HSD$		-0.232** (0.066)			- 0.068** (0.030)		
$frailty_t \times HSG$		-0.207*** (0.058)			- 0.046*** (0.002)		
$frailty_t\timesCG$		-0.093* (0.052)			- 0.021 (0.018)		
$frailty_t \times Bad \; Health$			-0.193*** (0.065)			- 0.036** (0.017)	
$frailty_t \times Good \; Health$			-0.071 (0.178)			- 0.065 (0.066)	
AR(1) test (p-value)	0.455	0.319	0.497	0.030	0.010	0.021	
AR(2) test (p-value)	0.380	0.474	0.298	0.130	0.082	0.138	
Hansen test (p-value) Diff-in-Hansen test (p-value)	0.796 0.652	0.132 0.360	0.826 0.827	0.434 0.255	0.826 0.484	0.543 0.259	

Primarily due to extensive margin

Note:

 $^{*}p < 0.1; \ ^{**}p < 0.05; \ ^{***}p < 0.01$

Hosseini, Kopecky, and Zhao

Effect of Frailty on Hours

		Everyone			Workers	
	(1)	(2)	(3)	(4)	(5)	(6)
$\log(hours_{t-1})$	0.399 (0.322)	0.383 (0.319)	0.386 (0.317)	0.003 (0.345)	0.074 (0.313)	0.040 (0.311)
$\log(hours_{t-2})$	0.263 (0.257)	0.269 (0.253)	0.272 (0.253)	0.304 (0.218)	0.168 (0.221)	0.282 (0.219)
frailty _t	-0.144*** (0.044)			0.003 (0.009)		
$frailty_t \times HSD$		-0.177^{***} (0.049)			-0.001 (0.013)	
$frailty_t \times HSG$		-0.159*** (0.045)			0.001 (0.010)	
$frailty_t\timesCG$		-0.082** (0.041)			0.009 (0.009)	
$frailty_t \times Bad Health$			-0.137*** (0.046)			0.001 (0.010)
$frailty_t \times Good Health$			-0.082 (0.128)			-0.002 (0.034)
AR(1) test (p-value)	0.287	0.290	0.289	0.409	0.286	0.335
AR(2) test (p-value)	0.596	0.569	0.565	0.273	0.572	0.312
Hansen test (p-value) Diff-in-Hansen test (p-value)	0.971 0.944	0.317 0.597	0.838 0.713	0.060 0.080	0.166 0.062	0.174 0.108

Similar findings for hours

Note:

Hosseini, Kopecky, and Zhao

How Important is Health Inequality for Lifetime Earnings Inequality?

 $p^* < 0.1; p^* < 0.05; p^* < 0.01$

• Other Results

Effect of Frailty on Wages of Workers

	Everyone			Workers			
	(1)	(2)	(3)	(4)	(5)	(6)	
$\log(wage_{t-1})$				0.212 (0.541)	0.122 (0.368)	0.303 (0.449)	
$\log(wage_{t-2})$				0.532 (0.489)	0.600* (0.328)	0.461 (0.419)	
frailty _t				-0.023^{**} (0.010)			
$frailty_t \times HSD$					-0.069*** (0.023)		
$frailty_t \times HSG$					-0.033*** (0.011)		
$frailty_t \times CG$					-0.008 (0.011)		
frailty $_t$ × Bad Health						-0.022* (0.012)	
$frailty_t imes Good Health$						0.013 (0.062)	
AR(1) test (p-value)	0.651	0.518	0.552				
AR(2) test (p-value)	0.454	0.189	0.474				
Hansen test (<i>p</i> -value)	0.085	0.374	0.207				
Diff-in-Hansen test (<i>p</i> -value)	0.044	0.145	0.082				

Average effect of frailty on wages is small

Significant negative effect for less educated workers

Note:

 $^{*}p < 0.1; \ ^{**}p < 0.05; \ ^{***}p < 0.01$

How Important is Health Inequality for Lifetime Earnings Inequality?

Other Results

Effect of Earnings on Frailty

	(1)	(2)	(3)	(4)
frailty _{t-1}	0.445 (0.463)	0.334 (0.435)	-0.152 (0.528)	-0.456 (0.400)
$frailty_{t-2}$	0.602 (0.447)	0.661 (0.443)	1.124** (0.495)	1.446*** (0.404)
$log(earnings_t)$	0.004* (0.002)			
$\log(earnings_t) \times HSD$		0.003 (0.002)		
$\log(earnings_t) \times HS$		-0.008 (0.039)		
$\log(earnings_t) \times CL$		0.000 (0.001)		
$\log(earnings_t) \times Bad Health$			0.002 (0.002)	
$log(earnings_t) \times Good \; Health$			0.000 (0.003)	
$log(earnings_t) \times Young$				-0.000 (0.001)
$log(earnings_t) \times Old$				-0.000 (0.002)
AR(1) test (p-value)	0.531	0.573	0.501	0.001
AR(2) test (p-value)	0.333	0.260	0.061	0.002
Hansen test (p-value) Diff-in-Hansen test (p-value)	0.269 0.450	0.842 0.852	0.621 0.894	0.129 0.132

No statistically significant effect of changes in earnings on frailty

Consistent with empirical literature

empirical literature

Note: Hosseini, Kopecky, and Zhao $^{*}p < 0.1; \ ^{**}p < 0.05; \ ^{***}p < 0.01$

Empirical Findings — Summary

- Increases in frailty reduce earnings and hours.
- The effect is
 - primarily driven by employment margin.
 - concentrated in less educated and less healthy individuals.
- These findings suggest that
 - health inequality may be an important source of lifetime earnings inequality.
 - social insurance may play an important role.
- Next: Quantify the impact of health inequality on lifetime earnings inequality (and importance of various channels).

Plan of the Talk

How we measure health

Empirical Analysis

Structural Model

Calibration Highlights

Quantitative Exercise

Quantitative Model Overview

- *J* period, OLG, GE model.
- Individuals are subject to exogenous shocks:
 - frailty, productivity, and job separation.
- If separated, can choose to pay a one-time wage cost and go back to work.
- Frailty impacts an individual's
 - Labor productivity
 - Mortality
 - OOP medical expenditures
 - Disutility of working
 - Probability of becoming DI beneficiary.

Quantitative Model Overview

- Individuals:
 - Employed:
 - If young: can choose to switch to non-employment.
 - If old: can choose to retire.
 - Non-employed:
 - Become a DI beneficiary with some probability.
 - Can choose to go to employed state.
 - DI beneficiaries:
 - Collect SSDI/SSI benefits until retirement at age *R*.
 - Retirees:
 - Collect social security benefits and do not work.
- Government: collects taxes (capital, income, payroll)
 - Pays out SS, SSDI, SSI, and means-tested transfers + exogenous government purchases.

Problem of Young Employed Individual

Employed individual with j < R - 1 solves

$$V^{E}(x, i_{s}) = \max_{c, a' \ge 0} u(c, v(f)) + \sigma \beta p(j, f, s) E\left[\max\left\{V^{E}(x', 1), V^{N}(x', 0)\right\}\right] + (1 - \sigma) \beta p(j, f, s) E\left[\max\left\{V^{E}(x', 0), V^{N}(x', 0)\right\}\right]$$

subject to ...

- individual state variable $\mathbf{x} = (j, \mathbf{a}, \mathbf{s}, f, \epsilon, \overline{\mathbf{e}})$
 - j: age
 - a: assets
 - s: education
 - f: frailty $\equiv \psi(j, s, \varepsilon_f)$ where ε_f is frailty shocks and fixed effect
 - $\epsilon:$ productivity shock and fixed effect
 - $\bar{e}:$ average past earnings

Problem of Young Employed Individual

Employed individual with j < R - 1 solves

$$V^{E}(x, i_{s}) = \max_{c, a' \ge 0} u(c, v(f)) + \sigma \beta p(j, f, s) E\left[\max\left\{V^{E}(x', 1), V^{N}(x', 0)\right\}\right] + (1 - \sigma)\beta p(j, f, s) E\left[\max\left\{V^{E}(x', 0), V^{N}(x', 0)\right\}\right]$$

subject to

$$\frac{a'}{1+r} + c + m^{\mathsf{E}}\left(j, f, s\right) = a + w\eta\left(j, f, s, \epsilon\right) - T\left(w\eta\right) - \chi(w\eta)\mathbf{i}_{s} + Tr(x, \mathbf{i}_{s}),$$

$$ar{e}' = [(j-1)ar{e} + w\eta]/j$$

- *is*: indicates the worker is coming from separation

Hosseini, Kopecky, and Zhao

Problem of Young Employed Individual

Employed individual with j < R - 1 solves

$$V^{E}(x, i_{s}) = \max_{c, a' \geq 0} u(c, v(f)) + \sigma \beta p(j, f, s) E\left[\max\left\{V^{E}(x', 1), V^{N}(x', 0)\right\}\right] + (1 - \sigma) \beta p(j, f, s) E\left[\max\left\{V^{E}(x', 0), V^{N}(x', 0)\right\}\right]$$

subject to ...

- Utility function is

$$u(c, v(f)) = rac{\left(c^{\mu} \left(1 - v(f)\right)^{1-\mu}\right)^{1-\gamma}}{1-\gamma},$$

where $v(f) = \phi_0 + \phi_1 f^{\phi_2}$, $\phi_0 \ge 0$, $\phi_1 \ge 0$, and $\phi_2 \ge 0$.

Problem of Old Employed Individual

Employed individual with j > R - 1 solves

$$V^{E}(x, i_{s}) = \max_{c, a' \ge 0} u(c, v(f)) + \sigma p(j, f, s) E\left[\max\left\{V^{E}(x', 1), V^{R}(x')\right\}\right] + (1 - \sigma) \beta p(j, f, s) E\left[\max\left\{V^{E}(x', 0), V^{R}(x')\right\}\right]$$

subject to

$$\frac{a'}{1+r} + c + m^{R}(j, f, s) = a + w\eta(j, f, s, \epsilon) + SS(\bar{e}) - T(w\eta)$$
$$-\chi(w\eta)i_{s} + Tr(x, i_{s}),$$

$$ar{e}' = ar{e}$$

Hosseini, Kopecky, and Zhao

Problem of Young Non-employed Individual

Non-employed individual with j < R - 1 solves

$$V^{N}(x, n_{a}) = \max_{c, a' \ge 0} u(c) + \theta(f, n_{a})\beta p(j, f, s) E\left[V^{D}(x', 0)\right] \\ + \left[1 - \theta(f, n_{a})\right]\beta p(j, f, s) E\left[\max\left\{V^{E}(x', 1), V^{N}(x', n_{a} + 1)\right\}\right]$$

subject to

$$\frac{a'}{1+r}+c+m^N(j,f,s)=a+Tr(x).$$

- *n*_a: number of periods in non-employment.
- Probability of successful DI application: $\theta(f, n_a) = \min\{1, \kappa_0 f^{\kappa_1} n_a^{\kappa_2}\}$

Problem of a DI Beneficiary

- DI beneficiary with j < R - 1 solves

$$V^{D}(x, n_{d}) = \max_{c, a' \geq 0} u(c) + \beta p(j, f, s) E\left[V^{D}(x', n_{d} + 1)\right]$$

$$\frac{a'}{1+r} + c + m^D(j, f, s, n_d) = a + SS(\bar{e}) + Tr(x, n_d).$$

- *n*_d: number of periods on DI.

Hosseini, Kopecky, and Zhao

Plan of the Talk

How we measure health

Empirical Analysis

Structural Model

Calibration Highlights

Quantitative Exercise

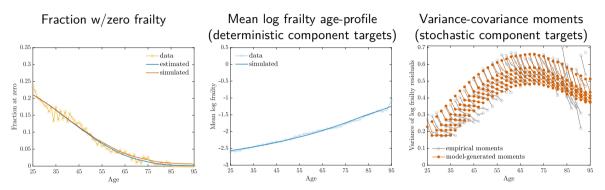
Calibration Strategy Overview

- Model period is 1 year.
- Agents live from j = 1 (age 25) to a maximum J = 70 (age 94).
- Frailty affects earnings through five channels:
- 1. Survival rate
- 2. Out of pocket medical expenditures
- 3. Labor productivity proxied by hourly wages
- 4. Probability of successful DI application
- 5. Preferences disutility of work

estimated outside model

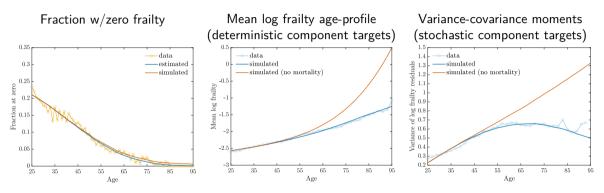
calibrated using model

Details


Details 2

Stochastic process for frailty

- Assume positive fraction of people with zero frailty at age 25.
- Each period, frailty remains zero with probability P(age) and becomes positive with probability 1 P(age).
- If positive, log frailty is sum of
 - deterministic component: age poly
 - stochastic component: fixed effect, transitory shock, and $\mathsf{AR}(1)$ shock
- Estimate separately for each education group.
- To account for selection due to mortality, estimation uses
 - auxiliary simulation model
 - simulated method of moments



Stochastic frailty process for high school graduates

Stochastic frailty process for high school graduates

- **Important to account for selection:** effects of mortality on mean and variance of log frailty are large at older ages.

HSD COL

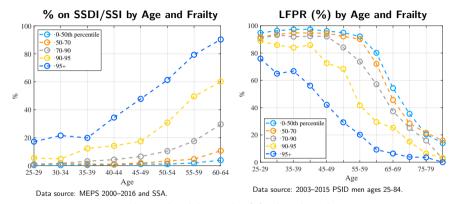
Stochastic process for productivity

- By education, log productivity (wage) is sum of
 - deterministic component: age poly and quadratic frailty effect
 - stochastic component: fixed effect and AR(1) shock
- Frailty effects are estimated using dynamic panel system GMM estimator.
 - Correct for selection bias using a procedure recommended by Al-Saddoon et al. (2019).
- Effect of an additional deficit on wage:

	HSD		COL	COL
	пзр	HSG	(frailty $<$ 76th prctile)	(frailty = 95th prctile)
Before correction	-4.2%	-2.5%	0%	-2.6%
After correction	-4.4%	-2.7%	0%	-2.8%
			_	

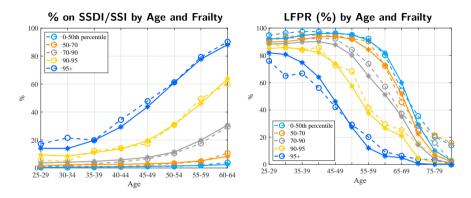
Severe disability

▶ Details


▶ Compare

Disutility of Work vs DI Probabilities Identification Strategy

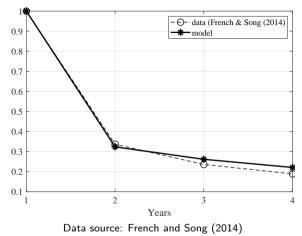
- DI probability and disutility of work parameters calibrated using the model.
- Calibration targets:
 - DI recipiency rates by age and frailty for ages 25 to 64.
 - Labor force participation by age and frailty for ages 25 to 74.
 - Relative DI acceptance rate by number of years tried.
- Effect of frailty on disutility of work is identified by dispersion in LFPR's by frailty for 65-74 year-olds.
- Idea: DI process does not directly affect labor supply after age 65.


Hosseini, Kopecky, and Zhao

DI and LFP by Age and Frailty: Model vs Data

- Target more moments in the unhealthy tail of frailty distribution.

DI and LFP by Age and Frailty: Model vs Data

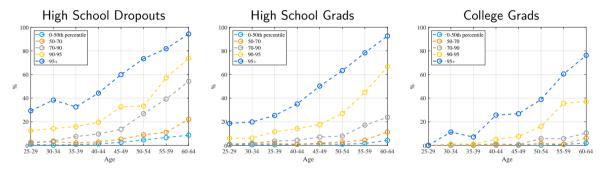


- Target more moments in the unhealthy tail of frailty distribution.
- Model matches moments well including the dispersion in LFPR's by frailty for 65-74 year-olds.
- DI probability and disutility from working are increasing and convex in frailty.

► Values

Hosseini, Kopecky, and Zhao

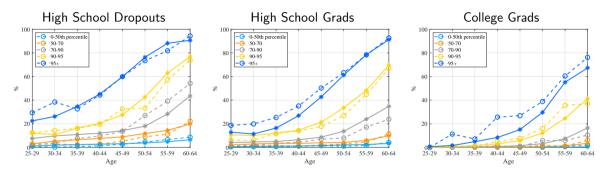
DI acceptance rate: Model vs. Data


- Model also matches rate of decline in DI acceptance by year since initial application
- DI probability increases in numbers of years since initially applied.

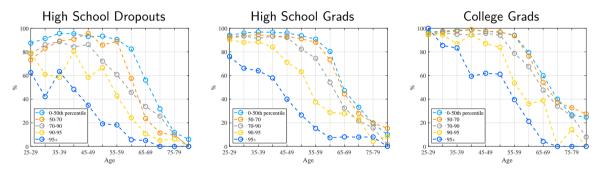
Hosseini, Kopecky, and Zhao

How Important is Health Inequality for Lifetime Earnings Inequality?

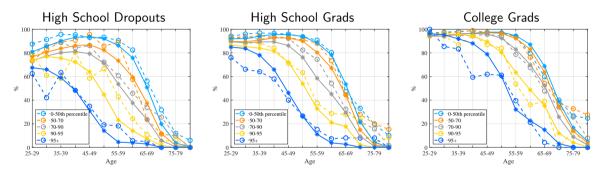
Values


Assessment: % on DI by frailty, age, and education

Hosseini, Kopecky, and Zhao


Assessment: % on DI by frailty, age, and education

- The model matches levels and patterns of DI recipiency education.



Assessment: LFP by frailty, age, and education

Assessment: LFP by frailty, age, and education

- The model matches levels and patterns of LFP by education.

Assessment: Impact of DI benefit denial on labor force participation

Table: Individuals denied benefits in first year of application: fraction working 3 years later

Ages	Period	25–64	35–64	45–64
Model		31%	28%	26%
Empirical estimates				
French & Song (2014)	1990's		26%	
Maestas et al. (2013)	early 2000's	27%		
Von Wachter et al. (2011)	1982			31%
Von Wachter et al. (2011)	1997			35%
Bound (1989)	1977			32%

French & Song (2014) is for individuals denied benefits 2 years after application. Maestas et al. (2013) is for 18 to 64 year-olds.

- Labor force participation of those denied DI benefits are consistent with empirical estimates.

Hosseini, Kopecky, and Zhao

Details

Plan of the Talk

How we measure health

Empirical Analysis

Structural Model

Calibration Highlights

Quantitative Exercise

Quantitative Exercise

- To understand the impact of health inequality on lifetime earnings inequality:
 - Consider a counterfactual economy where everyone has the same (average) frailty profile.
 - What is the impact on inequality in lifetime earnings at each age?

lifetime earnings at age j = sum of all earnings up to age j inequality = variance of log

Lifetime earnings inequality by age: Variance of log

	Age 45	Age 55	Age 65	Age 75
Benchmark	0.390	0.443	0.453	0.410
No frailty heterogeneity	0.339	0.322	0.315	0.310
$\bigtriangleup \downarrow$	13.1%	27.4%	30.4%	24.3%

Hosseini, Kopecky, and Zhao

How Important is Health Inequality for Lifetime Earnings Inequality?

► Zeros ► Ratios ► Gini ► Decomp

Quantitative Model Results: Decomposition

- How important are each of the 5 channels through which health affects individuals?

- 1. Probability of getting DI
- 2. Labor productivity
- 3. Disutility
- 4. Medical expenses
- 5. Survival probability
- To assess the importance of each channel:
 - Run 5 counterfactuals
 - Counterfactual 1: Equivalent to baseline except probability of DI is determined by average frailty profile.
 - And so on...

Computational Experiments: Decomposition

Table: Effect of removing frailty variation in each channel on the variance of log lifetime earnings

	age 45	age 55	age 65	age 75
1. DI channel	↓ 0.6%	$\downarrow 14.2\%$	$\downarrow 21.0\%$	$\downarrow 19.9\%$
2. Labor prod channel	↓ 2.3%	↓ 3.7%	$\downarrow 4.1\%$	↓ 4.3%
3. Disutility channel	↓ 0.4%	$\downarrow 0.8\%$	$\downarrow 1.0\%$	↓ 0.9%
4. Med exp channel	$\downarrow 0.1\%$	$\downarrow 0.2\%$	$\downarrow 0.0\%$	$\uparrow 0.0\%$
5. Surv prob channel	↓ 0.9%	↑ 0.3%	↑ 8.3%	↑ 5.9%

- These three channels are least important.

Computational Experiments: Decomposition

Table: Effect of removing frailty variation in each channel on the variance of log lifetime earnings

	age 45	age 55	age 65	age 75
1. DI channel	↓ 0.6%	↓ 14.2%	↓ 21.0%	↓ 19.9%
2. Labor prod channel	↓ 2.3%	↓ 3.7%	$\downarrow 4.1\%$	↓ 4.3%
3. Disutility channel	$\downarrow 0.4\%$	$\downarrow 0.8\%$	$\downarrow 1.0\%$	$\downarrow 0.9\%$
4. Med exp channel	$\downarrow 0.1\%$	$\downarrow 0.2\%$	$\downarrow 0.0\%$	\uparrow 0.0%
5. Surv prob channel	$\downarrow 0.9\%$	\uparrow 0.3%	↑ 8.3%	\uparrow 5.9%

- Removing DI channel \uparrow inequality at younger ages and \downarrow it at older ages.

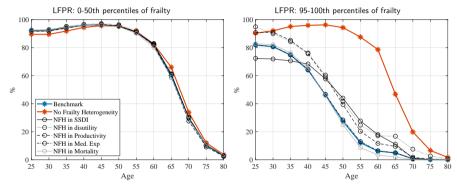
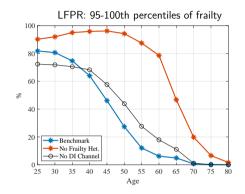

Computational Experiments: Decomposition

Table: Effect of removing frailty variation in each channel on the variance of log lifetime earnings

	age 45	age 55	age 65	age 75
1. DI channel	↓ 0.6%	$\downarrow 14.2\%$	↓ 21.0%	$\downarrow 19.9\%$
2. Labor prod channel	↓ 2.3%	↓ 3.7%	$\downarrow 4.1\%$	↓ 4.3%
3. Disutility channel	$\downarrow 0.4\%$	$\downarrow 0.8\%$	$\downarrow 1.0\%$	$\downarrow 0.9\%$
4. Med exp channel	$\downarrow 0.1\%$	$\downarrow 0.2\%$	$\downarrow 0.0\%$	$\uparrow 0.0\%$
5. Surv prob channel	$\downarrow 0.9\%$	↑ 0.3%	↑ 8.3%	\uparrow 5.9%

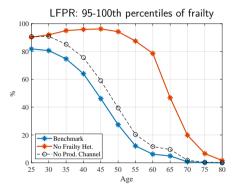
- Removing DI channel \uparrow inequality at younger ages and \downarrow it at older ages.
- Removing productivity channel \downarrow lifetime earnings inequality at all ages.


LFP in Counterfactural Economies

- LFP effects of removing frailty variation concentrated in unhealthy tail of frailty distribution.

Hosseini, Kopecky, and Zhao

LFP of Highly Frail in Counterfactural Economies



- Without DI channel:
 - Frail individuals no longer qualify for DI w/ high probability \Rightarrow Highly frail old's LFP \uparrow
 - Less incentive to work to accumulate SSDI earnings credits \Rightarrow Highly frail young's LFP $\downarrow.$

Hosseini, Kopecky, and Zhao

Details Income Consumption Aggregate Effects

LFP of Highly Frail in Counterfactural Economies

- Without productivity channel:

- Wages of frail individuals $\uparrow \Rightarrow$ Highly frail LFP \uparrow at all ages.

Hosseini, Kopecky, and Zhao

How Important is Health Inequality for Lifetime Earnings Inequality?

Details Income Consumption Aggregate Effects

Welfare effects of eliminating the DI program

- SSDI/SSI is primary channel through which health inequality leads to \uparrow lifetime earnings inequality. Should we eliminate it?

Welfare effects of eliminating the DI program

- SSDI/SSI is primary channel through which health inequality leads to \uparrow lifetime earnings inequality. Should we eliminate it?
- No, removing DI program reduces ex-ante welfare.

	Average	HSD	HSG	COL
No DI program (PE) no benefits or DI payroll taxes	-1.16%	-3.14%	-1.81%	0.74%
No DI program (GE), prop. increase in income taxes	-1.80%	-3.70%	-2.45%	0.05%
No DI program (GE), reduction of consumption floor	-2.50%	-5.81%	-3.22%	0.09%

Ex-ante welfare changes (% of lifetime consumption)

Understanding the welfare value of DI: insurance v. redistribution

- Ex ante welfare losses are due to a loss of both insurance and redistribution.
- To understand their relative importance, consider a DI program with no redistribution across education: DI is self-financed within each education group.

Understanding the welfare value of DI: insurance v. redistribution

Ex-ante welfare changes (% of lifetime consumption)						
	Average	HSD	HSG	COL		
No DI program (PE) no benefits or DI payroll taxes	-1.16%	-3.14%	-1.81%	0.74%		
No DI redistribution (PE), benefits financed by education-specific payroll taxes	-0.20%	-1.99%	-0.54%	1.08%		
No DI redistribution (GE), income taxes adjust to clear govt budget						

- About two-thirds (one-third) of welfare benefit of DI for HSD (HSG) comes from redistribution.

Hosseini, Kopecky, and Zhao

Understanding the welfare value of DI: insurance v. redistribution

Ex-ante welfare changes (% of lifetime consumption)						
	Average	HSD	HSG	COL		
No DI program (PE) no benefits or DI payroll taxes	-1.16%	-3.14%	-1.81%	0.74%		
No DI redistribution (PE), benefits financed by education-specific payroll taxes	-0.20%	-1.99%	-0.54%	1.08%		
No DI redistribution (GE), income taxes adjust to clear govt budget	-1.61%	-3.21%	-1.93%	-0.42%		

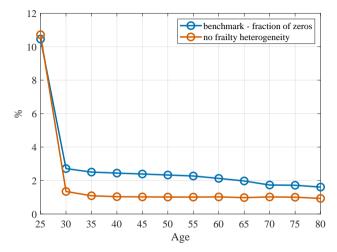
- In PE, college value DI program with no redistribution.
- But, they are worse off in GE because increased reliance on means-tested programs leads to higher income taxes.

Hosseini, Kopecky, and Zhao

Conclusion

- Document empirically:
 - Large response of earnings to incremental changes in frailty: mostly driven by participation.
 - Wage effects for less educated workers.
- Results from structural model:
 - Health inequality accounts for a substantial fraction (30%) of lifetime earnings inequality at age 65.
 - Reduced participation due to increased access to SSDI/SSI when health is poor plays an important role.
 - Yet, SSDI/SSI is ex-ante welfare improving.

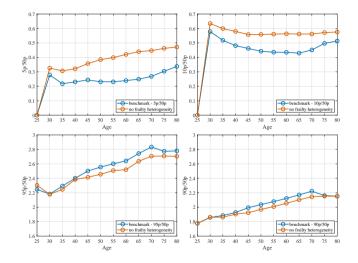
The End


Thank You!

Plan of the Talk

back up

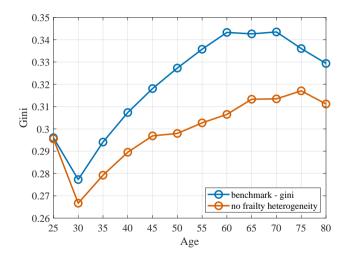
Back Up Slides


Fraction at zero: Model vs Data

- Removing frailty heterogeneity also reduces the fraction with zero lifetime earnings.

◆ Go Back

Lifetime earnings inequality by age: Ratios


- Impact is concentrated in the bottom of the lifetime earnings distribution.

Hosseini, Kopecky, and Zhao

Quantitative Model Results

Lifetime earnings inequality by age: Gini

- Removing frailty heterogeneity reduces the Gini of lifetime earnings at age 65 by 8.5%.

Hosseini, Kopecky, and Zhao

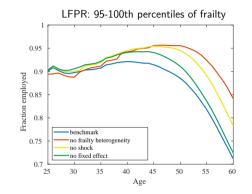
How Important is Health Inequality for Lifetime Earnings Inequality?

▶ Go back

6 of 95

Lifetime earnings inequality by age: Variance decomposition

Contribution of Ex-ant	e Hetero	geneity v	s. Frailty	Shocks
	Age 45	Age 55	Age 65	Age 75
Benchmark	0.390	0.443	0.453	0.410
No frailty heterogeneity $\triangle \downarrow$	0.339	0.322	0.315	0.310
	13.1%	27.4%	30.4%	24.3%
No frailty fixed effect $\bigtriangleup \downarrow$	0.349	0.388	0.392	0.367
	10.5%	12.4%	13.5%	10.6%
No frailty shock $\bigtriangleup \downarrow$	0.338	0.337	0.349	0.346
	13.5%	24.0%	22.9%	15.7%


Contribution of Ex anto Hotorogonaity vs. Erailty Shacks

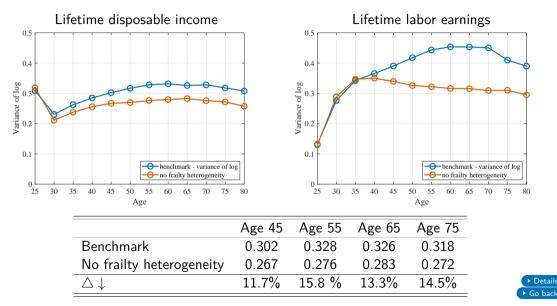
- Health shocks account for $\approx 2/3$'s of the impact of health inequality on lifetime earnings inequality.
- Removing heterogeneity vs risk vs both impacts both amount and timing of lifecycle labor supply.

Details > Go back

Hosseini, Kopecky, and Zhao

Removing heterogeneity vs shocks vs both: Fraction employed

- No fixed effect, shocks, or both: lifetime labor supply $\uparrow \Rightarrow$ lifetime earnings inequality \downarrow

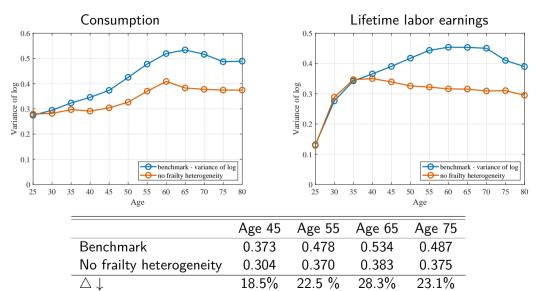

- No fixed effects and no shocks: labor supply of young \downarrow \Rightarrow lifetime earnings inequality \uparrow
- No fixed effects **or** no shocks: labor supply of young $\uparrow \Rightarrow$ lifetime earnings inequality \downarrow

Hosseini, Kopecky, and Zhao

How Important is Health Inequality for Lifetime Earnings Inequality?

Go back

Alternative measures of inequality: Variance of log



Hosseini, Kopecky, and Zhao

How Important is Health Inequality for Lifetime Earnings Inequality?

9 of 95

Consumption inequality: Variance of log

Hosseini, Kopecky, and Zhao

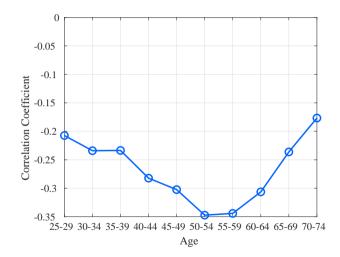
Aggregate effects of frailty heterogeneity

	NFH in	NFH in	NFH in	NFH in	NFH in	NFH in
	model	DI	Disutility	Labor prod.	Med. Exp.	Mortality
		%	6 change rela	ative to benchr	nark	
GDP	2.15	1.35	2.25	1.75	0.13	-0.72
Consumption	0.92	0.61	1.68	1.14	0.09	-1.54
Capital	2.15	1.35	2.25	1.75	0.13	-0.72
Labor input	2.15	1.35	2.25	1.75	0.13	-0.72
Hours	3.48	1.35	2.95	2.23	0.17	-0.50
GDP per Hour	-1.29	0.01	-0.67	-0.46	-0.04	-0.23

Note: NFH: no frailty heterogeneity.

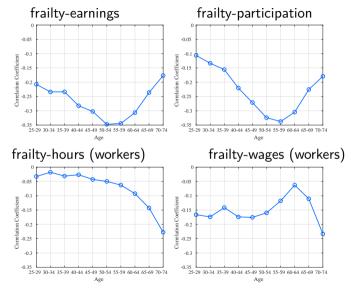
- Removing frailty heterogeneity increases GDP per capita.
- Effects of higher LFP larger than effect of lower mortality.

Alternative Inequality Measure


Inequality in lifetime disposable income by age: Variance of Log

	Age 45	Age 55	Age 65	Age 75
Benchmark	0.302	0.328	0.326	0.318
No frailty heterogeneity	0.267	0.276	0.283	0.272
$\bigtriangleup \downarrow$	11.7%	15.8 %	13.3%	14.5%
No frailty shock	0.261	0.277	0.286	0.275
$\bigtriangleup \downarrow$	13.5%	15.7%	12.4%	13.4%
No frailty fixed effect	0.265	0.287	0.286	0.274
$\bigtriangleup \downarrow$	12.4%	12.5%	12.2%	13.7%

- Both shocks and fixed effect have a large effect on disposable income inequality.

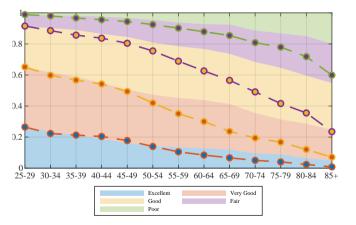

▶ Go Back

Frailty-Earnings Correlation by Age

Frailty Correlations by Age

Hosseini, Kopecky, and Zhao

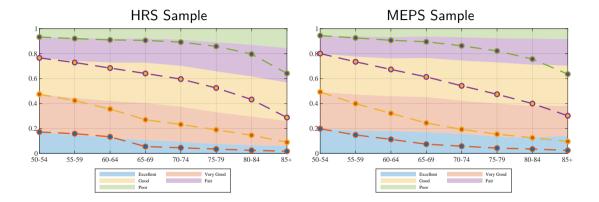
Gerontology Literature


- Mitnitski et al. (2001); Mitnitski et al. (2002)
- Mitnitski et al. (2005); Goggins et al. (2005)
- Searle et al. (2008); Yang and Lee (2010)
- Woo et al. (2005); Rockwood and Mitnitski (2007)
- Rockwood et al. (2007); Mitnitski et al. (2004)
- Kulminski et al. (2007a); Kulminksi et al. (2007b)

15 of 95

Hosseini, Kopecky, and Zhao

Frailty and SRHS over the Life Cycle Data: Household heads and spouses in 2003–2015 PSID



- Area shows share reporting each SRHS at each age.
- We partition frailty distribution at each age.
- Choose cutoffs to match dist. of SRHS at 25-29.
- Hold cutoffs fixed.

Health declines faster after age 50 when measured by frailty.

Frailty and SRHS over the Life Cycle

Probit: Becoming a DI recipient (HRS)

	Pa	nel A: every	one		Panel B: by	SRHS heal	th at $t-1$	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
very $good_{t-1}$	0.070 (0.049)		-0.085 (0.053)					
$good_{t-1}$	0.418*** (0.046)		0.015 (0.051)					
$fair_{t-1}$	0.984*** (0.046)		0.306*** (0.053)					
$poor_{t-1}$	1.597*** (0.049)		0.555*** (0.058)					
$frailty_{t-1}$		7.275*** (0.253)	6.098*** (0.273)	6.572*** (1.256)	4.310*** (0.879)	4.676*** (0.613)	5.381*** (0.518)	4.806*** (0.725)
$frailty_{t-1}^2$		-4.929*** (0.368)	-4.387*** (0.384)	-3.297 (2.478)	-0.388 (1.806)	-0.792 (1.036)	-3.438*** (0.735)	-3.550** (0.833)
Controls Observations	YES 76,513	YES 76,513	YES 76,513	YES 12,478	YES 25,409	YES 23,486	YES 11,679	YES 3,461
Pseudo R ²	0.178	0.239	0.252	0.211	0.116	0.161	0.111	0.064

Data: HRS respondents under age 66. Panel A are results from the full sample while Panel B are results obtained using sub-samples based on SRHS in wave t - 1. Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01. Standard errors in parentheses. Hosseini, Kopecky, and Zhao How Important is Health Inequality for Lifetime Earnings Inequality?

Probit: Becoming a DI recipient (PSID)

	Panel	A: younger	than 66		Panel B: by	SRHS heal	th at $t-1$	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
		(2)		(1)	(2)	(3)	(4)	(3)
very $good_{t-1}$	0.080		-0.054					
	(0.073)		(0.077)					
$good_{t-1}$	0.487***		0.208***					
0	(0.067)		(0.072)					
$fair_{t-1}$	1.013***		0.484***					
	(0.069)		(0.076)					
$poor_{t-1}$	1.622***		0.745***					
	(0.078)		(0.089)					
$frailty_{t-1}$		7.380***	5.992***	6.061***	5.595***	5.361***	5.672***	4.232**
<i>y</i> , <i>z</i>		(0.385)	(0.408)	(2.310)	(1.300)	(0.879)	(0.830)	(1.212)
$frailty_{t-1}^2$		-5.558***	-4.879***	-7.942	-3.237	-2.366	-4.030***	-3.262**
, , , , , , , , , , , , , , , , , , ,		(0.654)	(0.676)	(7.899)	(3.188)	(1.928)	(1.352)	(1.572)
Controls	YES	YES	YES	YES	YES	YES	YES	YES
Observations	45,906	45,906	45,906	9,240	16,816	14,271	4,542	1,037
Pseudo R ²	0.187	0.232	0.251	0.145	0.118	0.151	0.111	0.077

Data: PSID respondents under age 66. Panel A are results from the full sample while Panel B are results obtained using sub-samples based on SRHS in wave t - 1. Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01. Standard errors in parentheses. **Go Back**

Hosseini, Kopecky, and Zhao

Probit: Becoming a DI recipient - under 45 only (PSID)

	Panel	A: younger	than 45		Panel B: by	SRHS healt	:h at <i>t</i> – 1	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
very $good_{t-1}$	0.113 (0.100)		-0.024 (0.105)					
$good_{t-1}$	0.330*** (0.097)		0.055 (0.104)					
$fair_{t-1}$	0.999*** (0.099)		0.479*** (0.110)					
$poor_{t-1}$	1.550*** (0.125)		0.627*** (0.146)					
$frailty_{t-1}$		6.964*** (0.651)	5.838*** (0.687)	4.036 (2.863)	5.788*** (1.803)	4.022*** (1.407)	6.242*** (1.381)	9.881** (3.044)
$frailty_{t-1}^2$		-4.370*** (1.175)	-3.910*** (1.209)	-5.259 (9.696)	-0.602 (4.266)	0.691 (2.964)	-4.022* (2.243)	-9.945* (4.085)
Controls Observations	YES 23,475	YES 23,475	YES 23,475	YES 5,693	YES 9,062	YES 6,650	YES 1,775	YES 295
Pseudo R ²	0.153	0.218	0.237	0.097	0.158	0.149	0.152	0.149

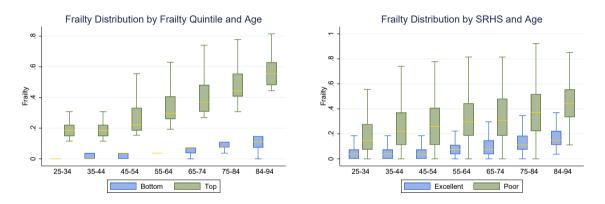
Data: PSID respondents under age 66. Panel A are results from the full sample while Panel B are results obtained using sub-samples based on SRHS in wave t - 1. Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01. Standard errors in parentheses. Hosseini, Kopecky, and Zhao How Important is Health Inequality for Lifetime Earnings Inequality? 20 of 95

Probit: Mortality

	Pa	nel A: every	one		Panel B: by	SRHS healt	that $t-1$	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
very $good_{t-1}$	0.053** (0.024)		-0.007 (0.025)					
$good_{t-1}$	0.293*** (0.023)		0.120*** (0.024)					
$fair_{t-1}$	0.649*** (0.023)		0.300*** (0.025)					
$poor_{t-1}$	1.186*** (0.024)		0.570*** (0.027)					
$frailty_{t-1}$		2.970*** (0.098)	1.886*** (0.107)	2.595*** (0.452)	2.377*** (0.267)	2.456*** (0.215)	1.345*** (0.233)	0.499 (0.350)
$frailty_{t-1}^2$		-0.490*** (0.120)	0.105 (0.126)	0.295 (0.651)	0.463 (0.368)	0.164 (0.275)	1.000*** (0.265)	1.406** (0.350)
Controls Observations	YES 212,978	YES 212,978	YES 212,978	YES 23,689	YES 53,552	YES 57,117	YES 34,890	YES 14,109
Pseudo R ²	0.217	0.241	0.251	0.259	0.233	0.220	0.188	0.148

Data: HRS. Panel A are results from the full sample while Panel B are results obtained using sub-samples based on SRHS in wave t - 1. Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; ***p < 0.01. Standard errors in parentheses. Go Back 21 of 95

Hosseini, Kopecky, and Zhao


Probit: Entering Nursing Home

	Pai	nel A: every	one		Panel B: by	SRHS healt	h at $t-1$	
	(1)	(2)	(3)	'Excellent (1)	'Very good' (2)	'Good' (3)	'Fair' (4)	'Poor' (5)
very $good_{t-1}$	0.008 (0.044)		-0.064 (0.046)					
$good_{t-1}$	0.139*** (0.042)		-0.044 (0.045)					
$fair_{t-1}$	0.360*** (0.043)		0.012 (0.047)					
$poor_{t-1}$	0.700*** (0.045)		0.125** (0.052)					
$frailty_{t-1}$		1.975*** (0.211)	1.798*** (0.227)	2.580** (1.010)	1.445** (0.577)	2.089*** (0.470)	0.574 (0.469)	-0.437 (0.667)
$frailty_{t-1}^2$		0.160 (0.269)	0.160 (0.279)	-0.791 (1.641)	1.449 (0.908)	-0.113 (0.661)	1.437** (0.562)	2.212** (0.683)
Controls Observations	YES 168,412	YES 168,412	YES 168,412	YES 19,602	YES 49,875	YES 53,616	YES 33,040	YES 12,279
Pseudo R ²	0.231	0.261	0.263	0.369	0.288	0.256	0.218	0.166

Data: HRS. Panel A are results from the full sample while Panel B are results obtained using sub-samples based on SRHS in wave t - 1. Controls are gender, education, marital status and quadratic in age. *p < 0.1; **p < 0.05; **p < 0.01. Standard errors in parentheses. Hoselini, Kopecky, and Zhao

05

Why use frailty index?

Lots of action in the tails: need for finer grid.

Hosseini, Kopecky, and Zhao

How Important is Health Inequality for Lifetime Earnings Inequality?

▶ Go Back

Summary Statistics for PSID Sample

	2002	2004	2006	2008	2010	2012	2014	2016	Pooled 2002-2016
Panel A: Mean (median) [standard	deviation] of	sample charac	eristics						
Age	44.33	44.28	44.34	44.58	44.74	45.02	45.4	45.54	44.65
	(43)	(43)	(43)	(43)	(43)	(43)	(43)	(42)	(43)
	[15.24]	[15.53]	[15.67]	[15.8]	[16.01]	[16.08]	[16.04]	[15.99]	[15.71]
Frailty	0.1	0.1	0.11	0.11	0.12	0.12	0.12	0.12	0.11
	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.1)	(0.07)	(0.07)
	[0.1]	[0.11]	[0.11]	[0.11]	[0.12]	[0.12]	[0.12]	[0.12]	[0.12]
Annual Earnings	\$35,623.31	\$35,992.43	\$36,313.91	\$36,712.28	\$33,658.89	\$34,072.19	\$33,635.38	\$35,303.67	\$35,095.34
	(27,231.43)	(27,247.63)	(27,474.38)	(26,544.91)	(22,987.3)	(23,000)	(23,339.49)	(24,978.14)	(25,564.01)
	[68,179.23]	[63,875.82]	[62,243.45]	[74,320.19]	[57,064.71]	[87,518.92]	[65,135.22]	[51,803.91]	[64,377.99]
Annual Hours	1,531.6	1,528.01	1,517.57	1,448.99	1,377.42	1,411.74	1,434.46	1,471.19	1,476.92
	(1,888)	(1,880)	(1,880)	(1,813.5)	(1,700)	(1,783)	(1,814)	(1,872)	(1,840.5
	[1,035.63]	[1,049.47]	[1,042.58]	[991.18]	[1,033.49]	[1,045.86]	[1,057.89]	[1,059.13]	[1,037.86]
Hourly Wage	\$23.43	\$24.31	\$24.35	\$24.76	\$24.14	\$23.59	\$23.11	\$24.03	\$23.78
	(17.67)	(17.77)	(17.67)	(18.74)	(17.76)	(17)	(17.23)	(18)	(17.68)
	[37.64]	[57.69]	[61.27]	[36.63]	[29.94]	[40.69]	[31.39]	[28.38]	[40.52]
Panel B: Fraction of sample by cha	aracteristics								
Male	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
$+\Delta$ Frailty	-	0.3	0.33	0.32	0.3	0.29	0.28	0.29	0.3
$-\Delta$ Frailty	-	0.13	0.13	0.13	0.14	0.14	0.14	0.14	0.14
Observations (N)	11,777	12,210	12,727	13,177	13,473	13,524	13,294	14,092	104,274
# of Individuals (n)									21,024
Average # of Years Observed (T)									4.8

Note: The summary statistics are for ages 25 to 94 of household heads and spouses. Annual earnings is an individual's labor earnings for the year (in 2012\$). Annual hours is the sum of reported working hours for the year. Hourly wage is annual earnings divided by annual hours for labor force participants. Means are reported; median values are reported in parentheses; standard deviations are reported in brackets.

Hosseini, Kopecky, and Zhao

Summary Statistics for PSID Sample

	2002	2004	2006	2008	2010	2012	2014	2016	Pooled 2002-2016
Panel A: Mean (median) [standard	deviation] of	sample charad	teristics						
Age	44.33	44.28	44.34	44.58	44.74	45.02	45.4	45.54	44.65
	[15.24]	[15.53]	[15.67]	[15.8]	[16.01]	[16.08]	[16.04]	[15.99]	[15.71]
Frailty	0.1	0.1	0.11	0.11	0.12	0.12	0.12	0.12	0.11
	[0.1]	[0.11]	[0.11]	[0.11]	[0.12]	[0.12]	[0.12]	[0.12]	[0.12]
Annual Earnings	\$35,623.31	\$35,992.43	\$36,313.91	\$36,712.28	\$33,658.89	\$34,072.19	\$33,635.38	\$35,303.67	\$35,095.34
	[68,179.23]	[63,875.82]	[62,243.45]	[74,320.19]	[57,064.71]	[87,518.92]	[65,135.22]	[51,803.91]	[64,377.99]
Annual Hours	1,531.6	1,528.01	1,517.57	1,448.99	1,377.42	1,411.74	1,434.46	1,471.19	1,476.92
	[1,035.63]	[1,049.47]	[1,042.58]	[991.18]	[1,033.49]	[1,045.86]	[1,057.89]	[1,059.13]	[1,037.86]
Hourly Wage	\$23.43	\$24.31	\$24.35	\$24.76	\$24.14	\$23.59	\$23.11	\$24.03	\$23.78
	[37.64]	[57.69]	[61.27]	[36.63]	[29.94]	[40.69]	[31.39]	[28.38]	[40.52]
Panel B: Fraction of sample by cha	aracteristics								
Male	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
High School Dropouts (HSD)	15.16	14.92	14.28	13.96	13.9	13.91	13.61	13.89	14.58
High School Graduates (HS)	55.76	55.19	55.04	54.89	54.43	54.09	54.32	53.7	54.88
College Graduates (CL)	29.08	29.89	30.68	31.15	31.67	32	32.07	32.41	30.55
$+\Delta$ Frailty	-	0.3	0.33	0.32	0.3	0.29	0.28	0.29	0.3
$-\Delta$ Frailty		0.13	0.13	0.13	0.14	0.14	0.14	0.14	0.14
Observations (N) # of Individuals (n) Average # of Years Observed (T)	11,777	12,210	12,727	13,177	13,473	13,524	13,294	14,092	104,274 21,024 4.86

Note: The summary statistics are for ages 25 to 94 of household heads and spouses. Individuals included in the sample are in at least 2 consecutive waves in PSID. Annual earnings is an individual's labor earnings for the year (in 2012\$). Annual hours is the sum of reported working hours for the year. Hourly wage is annual earnings divided by annual hours for labor force participants. Means are reported; median values are reported in parentheses; standard deviations are reported in brackets.

Summary Statistics for Dynamic Panel Sample

	2002	2004	2006	2008	2010	2012	2014	2016	Pooled 2002-2010
Panel A: Mean (median) [standard	deviation] of	sample charact	teristics						
Age	40.75	41.2	41.73	42.36	42.97	43.77	45.64	47.53	42.6
	(41)	(42)	(42)	(42)	(42)	(42)	(44)	(46)	(42
	[11.11]	[11.77]	[12.33]	[12.85]	[13.34]	[13.7]	[13.7]	[13.69]	[12.72
Frailty	0.08	0.09	0.10	0.10	0.11	0.11	0.12	0.13	0.1
	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.10)	(0.10)	(0.07
	[0.09]	[0.09]	[0.1]	[0.1]	[0.11]	[0.11]	[0.12]	[0.12]	[0.11
Annual Earnings	\$39,913.5	\$39,951.17	\$39,779.58	\$39,670.04	\$36,294.58	\$36,659.7	\$36,554.79	\$38,088.25	\$38,526.7
	(30,944.81)	(30,446.27)	(30,277.88)	(29,730.3)	(26, 121.94)	(25,100)	(26, 256. 93)	(27,860.24)	(29,174.36
	[73,161.16]	[68,148.32]	[65,088.35]	[77,401.9]	[58,809.46]	[92,687.86]	[70,310.25]	[56,168.13]	[68,482.15
Annual Hours	1,698.71	1,675.51	1,647.33	1,550.34	1,466.27	1,492.25	1,495.81	1,482.53	1,590.
	(1,960)	(1,960)	(1,944)	(1,880)	(1,820)	(1,856)	(1,872)	(1,888)	(1,920
	[965.19]	[990.17]	[989.62]	[949.76]	[1,011.75]	[1,030.75]	[1,051.32]	[1,064.97]	[999.24
Hourly Wage	\$22.84	\$23.27	\$23.03	\$24.38	\$24.01	\$23.27	\$23.67	\$25.27	\$23.5
	(17.84)	(17.94)	(17.74)	(18.96)	(18.09)	(17.56)	(18.04)	(18.89)	(18.06
	[25.85]	[28.3]	[23.46]	[27.15]	[26.59]	[25.73]	[23.07]	[26.81]	[25.37
Panel B: Fraction of sample by cha	aracteristics								
Male	0.45	0.45	0.45	0.45	0.45	0.45	0.44	0.44	0.4
High School Dropouts (HSD)	13.47	13.31	13.06	13.02	13.04	13.04	13.12	12.86	13.2
High School Graduates (HS)	55.62	55.06	54.56	54.33	53.97	53.47	53.49	53.42	54.5
College Graduates (CL)	30.91	31.63	32.39	32.66	32.99	33.48	33.39	33.72	32.2
$+\Delta$ Frailty	-	0.28	0.32	0.3	0.28	0.28	0.27	0.27	0.2
$-\Delta$ Frailty	-	0.13	0.13	0.13	0.13	0.13	0.14	0.14	0.1
Observations (N)	9,665	10,100	10,647	11,174	11,536	11,663	10,809	10,206	85,80
# of Individuals (n)									14,26
Average # of Years Observed (T)									6.0

Note: The summary statistics are for ages 25 to 64 of household heads and spouses. Individuals included in the sample are in at least 2 consecutive waves in PSID. Annual earnings is an individual's labor earnings for the year (in 2012\$). Annual hours is the sum of reported working hours for the year. Hourly wage is annual earnings divided by annual hours for labor force participants. Means are reported; median values are reported in parentheses; standard deviations are reported in brackets.

Hosseini, Kopecky, and Zhao

Summary S	Statis	tics f	or Dy	ynam	ic Pa	nel Sa	ample	e, We	orkers
	2002	2004	2006	2008	2010	2012	2014	2016	Pooled 2002-2016
Panel A: Mean (median) [standard	deviation] of	sample charac	teristics						
Age	38.69	38.95	39.39	39.77	40.14	40.66	42.42	44.34	40.10
	(39)	(39)	(39)	(39)	(39)	(39)	(40)	(42)	(39)
	[9.61]	[10.26]	[10.79]	[11.33]	[11.83]	[12.13]	[12.1]	[12.14]	[11.19]
Frailty	0.06	0.06	0.07	0.07	0.08	0.08	0.09	0.09	0.08
	(0.04)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)
	[0.06]	[0.06]	[0.06]	[0.07]	[0.07]	[0.07]	[0.08]	[0.08]	[0.07]
Annual Earnings	51,857.65	53,167	53876.26	54,826.77	52,899.68	54,881.27	55,503.18	58,201.99	53,757.76
	(39609.35)	(41,463.79)	(41,491.91)	(42,471.86)	(41,585.08)	(40,000)	(42,789.07)	(45,152.8)	(41,463.79)
	[84,044.28]	[64,951.95]	[59,016.86]	[63,531.05]	[64,581.51]	[120,948.31]	[87,450.06]	[64,377.8]	[75,912]
Annual Hours	2124.32	2140.36	2122.89	2034.56	2037.7	2081.94	2106.28	2096.56	2095.49
	(2065.5)	(2080)	(2064)	(2000)	(2024)	(2040)	(2050)	(2056)	(2040)
	[654.65]	[671.24]	[649.82]	[593.82]	[637.21]	[642.07]	[634.54]	[645.84]	[639.66]
Hourly Wage	23.9	24.72	24.72	26.35	25.57	25.31	26.02	27.78	25.29
	(19.06)	(19.35)	(19.42)	(20.42)	(19.8)	(19.32)	(19.98)	(21.52)	(19.67)
	[22.37]	[27.64]	[22.21]	[27.6]	[25.85]	[27.99]	[24.33]	[26.21]	[25.09]
Panel B: Fraction of sample by cha	aracteristics								
Male	0.54	0.54	0.54	0.54	0.54	0.54	0.53	0.53	0.54
High School Dropouts (HSD)	8.82	8.02	7.28	6.84	6.68	6.59	6.64	6.5	7.4
High School Graduates (HS)	50.35	49.77	49.47	49.27	49.46	48.99	48.89	48.87	49.61
College Graduates (CL)	40.82	42.21	43.25	43.89	43.86	44.42	44.48	44.63	42.99
$+\Delta$ Frailty	-	0.24	0.28	0.26	0.23	0.24	0.23	0.23	0.24
$-\Delta$ Frailty		0.11	0.10	0.10	0.11	0.11	0.10	0.11	0.10
Observations (N) # of Individuals (n) Average # of Years Observed (T)	4794	4937	5237	5557	5869	6119	5742	5355	43610 7,539 5.78

Note: The summary statistics are for ages 25 to 64 of household heads and spouses. Individuals included in the sample are in at least 2 consecutive waves in PSID. Annual earnings is an individual's labor earnings for the year (in 2012\$). Annual hours is the sum of reported working hours for the year. Hourly wage is annual earnings divided by annual hours for labor force participants. Means are reported; median values are reported in parentheses; standard deviations are reported in brackets.

Hosseini, Kopecky, and Zhao

Blundell-Bond System GMM Estimation

- In short panels, fixed effect estimator biases can be severe (Nickell (1981 ECTA)).
- Following Blundell-Bond (1998, JoEtrics), we estimate the following using GMM

$$\begin{bmatrix} y_{i,t} \\ \Delta y_{i,t} \end{bmatrix} = \gamma \begin{bmatrix} f_{i,t} \\ \Delta f_{i,t} \end{bmatrix} + \alpha_1 \begin{bmatrix} y_{i,t-1} \\ \Delta y_{i,t-1} \end{bmatrix} + \alpha_2 \begin{bmatrix} y_{i,t-2} \\ \Delta y_{i,t-2} \end{bmatrix} \\ + \delta \begin{bmatrix} \mathbf{Z}_{i,t} \\ \Delta \mathbf{Z}_{i,t} \end{bmatrix} + \begin{bmatrix} \varepsilon_{i,t} \\ \Delta \varepsilon_{i,t} \end{bmatrix}$$

- Full sample:
 - Use $f_{i,t-k}$, $y_{i,t-k}$, k = 4,5 as instruments for differences
 - Use $\Delta f_{i,t-k}$, $\Delta y_{i,t-k}$, k = 4,5 as instruments for levels
- Workers k = 5, 6 and frailty (reverse causality) k = 6, 7, 8.
- Use system estimator because earnings and frailty are close to random walk.

Blundell-Bond System GMM Estimation

- For our instruments to be valid is must be that:
 - lagged levels are uncorrelated with current error term.
 - correlation between endogenous variables and the unobserved (fixed) effect is constant over time.
- To check these assumptions we run the following tests:
 - AR(1) test for no ser corr in error terms (of diff eqn): this should be rejected (by construction)
 - AR(2) test for no second-order ser corr in error terms (of diff eqn): this should not be rejected
 - Hansen test for validity of level instruments: this should not be rejected
 - Diff-in-Hansen test for validity of diff instruments: this should not be rejected
- Also do additional robustness checks.

Go Back

Dynamic Panel Additional Robustness Checks

- Perform Diff-in-Hansen test on y-lag set only.
- Check that estimates lie in expected range based on OLS and FE.
- Run F-tests of instrument power.
- Conduct robustness tests to instrument set.

Effect of Frailty on Earnings Full Set of Diagnostic Tests

		Ev	eryone			W	orkers	
	(1)	(2) By Educ	(3) By Health	(4) By Age	(5)	(6) By Educ	(7) By Health	(8) By Age
AR(1) test (p-value)	0.455	0.319	0.497	0.104	0.030	0.010	0.021	0.008
AR(2) test (p-value)	0.380	0.474	0.298	0.949	0.130	0.082	0.138	0.160
Hansen test (p-value)	0.796	0.132	0.826	0.752	0.434	0.826	0.543	0.465
Diff-in-Hansen test (p-value)	0.652	0.360	0.827	0.464	0.255	0.484	0.259	0.214
Diff-in-Hansen test (p-value), Y-lag set	0.796	0.516	0.960	0.479	0.434	0.388	0.283	0.249
Starting IV Lag t-k (k=)	4	4	4	4	5	5	5	5
Ending IV Lag t-k $(k=)$	5	5	5	5	6	6	6	6

Dynamic Panel Additional Robustness Checks

- Perform Diff-in-Hansen test on y-lag set only.
- Check that estimates lie in expected range based on OLS and FE.
- Run F-tests of instrument power.
- Conduct robustness tests to instrument set.

Effect of Frailty on Earnings Comparison of OLS, FE, and BB

		Everyone			Workers			
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM		
$\log(earnings_{t-1})$	0.564***	0.206***	0.283	0.555***	0.098***	1.474***		
	(0.006)	(0.004)	(0.364)	(0.013)	(0.006)	(0.509)		
$\log(earnings_{t-2})$	0.188***	-0.021***	0.396	0.240***	-0.031***	-0.640		
	(0.006)	(0.005)	(0.298)	(0.012)	(0.006)	(0.454)		
frailty _t	-4.973***	-8.818***	-5.374***	-0.519***	-0.471***	-0.978**		
	(0.138)	(0.235)	(1.653)	(0.044)	(0.084)	(0.447)		
Observations R ²	64,965 0.580	64,965 0.432	64,965	34,274 0.601	34,274 0.080	34,274		

Effect of Frailty on Earnings – Young vs Old Comparison of OLS, FE, and BB

		Everyone			Workers	
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM
$\log(earnings_{t-1})$	0.564***	0.206***	0.628**	0.555***	0.098***	1.127***
	(0.006)	(0.004)	(0.291)	(0.013)	(0.006)	(0.302)
$\log(earnings_{t-2})$	0.188***	-0.021***	0.115	0.241***	-0.031***	-0.308
	(0.006)	(0.005)	(0.239)	(0.012)	(0.006)	(0.273)
$frailty_t \times Young$	-4.870***	-8.547***	-4.992***	-0.660***	-0.483***	-1.650**
	(0.202)	(0.297)	(1.784)	(0.061)	(0.099)	(0.673)
$frailty_t \times Old$	-5.034***	-8.943***	-4.030***	-0.376***	-0.463***	-0.293
	(0.161)	(0.249)	(1.317)	(0.054)	(0.091)	(0.365)
Observations R^2	64,965 0.580	64,965 0.433	64,965	34,274 0.601	34,274 0.080	34,274

Effect of Frailty on Earnings – Education

Comparison of OLS, FE, and BB

		Everyone			Workers	
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM
$\log(earnings_{t-1})$	0.560***	0.206***	0.370	0.544***	0.097***	1.371***
	(0.006)	(0.004)	(0.319)	(0.013)	(0.006)	(0.400)
$\log(earnings_{t-2})$	0.183***	-0.022***	0.318	0.233***	-0.031***	-0.569
	(0.006)	(0.005)	(0.259)	(0.011)	(0.006)	(0.356)
$frailty_t \times HSD$	-6.143***	-8.533***	-6.269***	-1.340***	-0.742***	-1.846**
	(0.213)	(0.526)	(1.777)	(0.111)	(0.254)	(0.807)
$frailty_t \times HS$	-5.215***	-9.586***	-5.591***	-0.762***	-0.712***	-1.239***
	(0.155)	(0.289)	(1.574)	(0.052)	(0.107)	(0.460)
$frailty_t \times CL$	-3.003***	-6.900***	-2.519*	0.053	-0.014	-0.558
	(0.209)	(0.457)	(1.402)	(0.053)	(0.132)	(0.484)
Observations R^2	64,965 0.581	64,965 0.435	64,965	34,274 0.605	34,274 0.089	34,274

Hosseini, Kopecky, and Zhao

Effect of Frailty on Earnings – Good Health vs Bad Health Comparison of OLS, FE, and BB

		Everyone			Workers	
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM
$\log(earnings_{t-1})$	0.564***	0.206***	0.220	0.555***	0.097***	1.293***
	(0.006)	(0.004)	(0.362)	(0.013)	(0.006)	(0.410)
$\log(earnings_{t-2})$	0.188***	-0.021***	0.444	0.240***	-0.031***	-0.498
	(0.006)	(0.005)	(0.297)	(0.012)	(0.006)	(0.377)
$frailty_t \times Good \ Health$	-3.076***	-6.816***	-1.930	-0.610***	-0.230*	-1.765
	(0.305)	(0.499)	(4.816)	(0.082)	(0.135)	(1.775)
$frailty_t imes Bad Health$	-4.818***	-8.607***	-5.207***	-0.522***	-0.446***	-0.963**
	(0.137)	(0.239)	(1.745)	(0.044)	(0.085)	(0.469)
Observations R^2	64,965 0.580	64,965 0.433	64,965	34,274 0.601	34,274 0.079	34,274

Effect of Frailty on Hours Comparison of OLS, FE, and BB

		Everyone			Workers			
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM		
$\log(hours_{t-1})$	0.554***	0.200***	0.399	0.332***	-0.027***	0.003		
	(0.006)	(0.004)	(0.322)	(0.008)	(0.006)	(0.345)		
$\log(hours_{t-2})$	0.180***	-0.028***	0.263	0.157***	-0.090***	0.304		
	(0.006)	(0.004)	(0.257)	(0.007)	(0.006)	(0.218)		
$frailty_t$	-3.626***	-6.655***	-3.887***	-0.175***	-0.442***	0.070		
	(0.100)	(0.172)	(1.188)	(0.028)	(0.056)	(0.246)		
Observations R ²	64,965 0.556	64,965 0.400	64,965	34,274 0.234	34,274 0.001	34,274		

Effect of Frailty on Hours – Young vs Old Comparison of OLS, FE, and BB

		Everyone			Workers	
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM
$\log(hours_{t-1})$	0.554***	0.200***	0.669***	0.332***	-0.027***	0.382
	(0.006)	(0.004)	(0.257)	(0.008)	(0.006)	(0.318)
$\log(hours_{t-2})$	0.180***	-0.028***	0.048	0.157***	-0.090***	0.254
	(0.006)	(0.004)	(0.206)	(0.007)	(0.006)	(0.246)
$frailty_t \times Young$	-3.457***	-6.411***	-3.564***	-0.200***	-0.484***	-0.286
	(0.149)	(0.217)	(1.325)	(0.039)	(0.066)	(0.387)
$frailty_t \times Old$	-3.726***	-6.767***	-3.131***	-0.151***	-0.414***	0.144
	(0.116)	(0.182)	(0.936)	(0.036)	(0.060)	(0.259)
Observations R^2	64,965 0.556	64,965 0.401	64,965	34,274 0.234	34,274 0.001	34,274

Effect of Frailty on Hours – Education

Comparison of OLS, FE, and BB

		Everyone			Workers	
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM
$\log(hours_{t-1})$	0.550***	0.200***	0.383	0.331***	-0.027***	0.074
	(0.006)	(0.004)	(0.319)	(0.008)	(0.006)	(0.313)
$\log(hours_{t-2})$	0.176***	-0.028***	0.269	0.156***	-0.091***	0.168
	(0.006)	(0.004)	(0.253)	(0.007)	(0.006)	(0.221)
$frailty_t \times HSD$	-4.433***	-6.526***	-4.770***	-0.403***	-0.942***	-0.533
	(0.157)	(0.385)	(1.320)	(0.078)	(0.169)	(0.356)
$frailty_t \times HS$	-3.732***	-7.241***	-4.303***	-0.189***	-0.440***	-0.033
	(0.112)	(0.211)	(1.224)	(0.032)	(0.071)	(0.281)
$frailty_t \times CL$	-2.380***	-5.119***	-2.219**	-0.092***	-0.311***	0.248
	(0.150)	(0.334)	(1.118)	(0.035)	(0.088)	(0.254)
Observations R ²	64,965 0.557	64,965 0.402	64,965	34,274 0.234	34,274 0.001	34,274

Hosseini, Kopecky, and Zhao

Effect of Frailty on Hours – Good Health vs Bad Health Comparison of OLS, FE, and BB

		Everyone			Workers	
	OLS	FÉ	SYS-GMM	OLS	FE	SYS-GMM
$\log(hours_{t-1})$	0.553***	0.200***	0.386	0.332***	-0.027***	0.040
	(0.006)	(0.004)	(0.317)	(0.008)	(0.006)	(0.311)
$\log(hours_{t-2})$	0.180***	-0.028***	0.272	0.157***	-0.091***	0.282
	(0.006)	(0.004)	(0.253)	(0.007)	(0.006)	(0.219)
$frailty_t \times Good \ Health$	-1.957***	-5.137***	-2.216	-0.046	-0.292***	-0.060
	(0.222)	(0.365)	(3.455)	(0.049)	(0.090)	(0.910)
$frailty_t imes Bad Health$	-3.491***	-6.494***	-3.707***	-0.171***	-0.426***	0.026
	(0.099)	(0.175)	(1.242)	(0.028)	(0.056)	(0.258)
Observations R^2	64,965 0.556	64,965 0.402	64,965	34,274 0.234	34,274 0.001	34,274

Wage regression Comparison of OLS, FE, and BB

		Eve	ryone		Workers	
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM
$\log(wage_{t-1})$				0.525*** (0.010)	0.067*** (0.006)	0.212 (0.541)
$\log(wage_{t-2})$				0.288*** (0.009)	-0.028*** (0.006)	0.532 (0.489)
$frailty_t$				-0.378*** (0.037)	-0.028 (0.073)	-0.623** (0.263)
Observations R^2*				34,170 0.592	34,170 0.056	34,170

Wage regression – Young vs Old Comparison of OLS, FE, and BB

		Eve	ryone		Workers	
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM
$\log(wage_{t-1})$				0.525*** (0.010)	0.067*** (0.006)	0.511 (0.399)
$\log(wage_{t-2})$				0.289*** (0.009)	-0.029*** (0.006)	0.272 (0.359)
$frailty_t \times Young$				-0.481*** (0.050)	0.028 (0.086)	-1.106** (0.463)
$frailty_t \times Old$				-0.274*** (0.045)	-0.064 (0.079)	-0.414 (0.295)
Observations R^2*				34,170 0.592	34,170 0.055	34,170

Hosseini, Kopecky, and Zhao

Wage regression – Education Comparison of OLS, FE, and BB

		Eve	ryone		Workers	
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM
$\log(wage_{t-1})$				0.514*** (0.010)	0.067*** (0.006)	0.122 (0.368)
$\log(wage_{t-2})$				0.279*** (0.009)	-0.029*** (0.006)	0.600* (0.328)
$frailty_t \times HSD$				-1.040*** (0.102)	0.191 (0.222)	-1.854*** (0.616)
$frailty_t \times HS$				-0.602*** (0.043)	-0.268*** (0.094)	-0.889*** (0.307)
$frailty_t \times CL$				0.123*** (0.046)	0.298*** (0.116)	-0.216 (0.309)
Observations R^2*				34,170 0.596	34,170 0.063	34,170

Hosseini, Kopecky, and Zhao

Wage regression – Good Health vs Bad Health Comparison of OLS, FE, and BB

		Eve	ryone		Workers		
	OLS	FE	SYS-GMM	OLS	FE	SYS-GMM	
$\log(wage_{t-1})$				0.525*** (0.010)	0.067*** (0.006)	0.303 (0.449)	
$\log(wage_{t-2})$				0.288*** (0.009)	-0.028*** (0.006)	0.461 (0.419)	
$frailty_t \times Good \ Health$				-0.561*** (0.071)	0.061 (0.118)	0.348 (1.685)	
$frailty_t imes Bad Health$				-0.384*** (0.037)	-0.019 (0.074)	-0.581* (0.332)	
Observations R^2*				34,170 0.592	34,170 0.055	34,170	

Dynamic Panel Additional Robustness Checks

- Check that estimates lie in expected range based on OLS and FE.
- Run F-tests of instrument power.
- Conduct robustness tests to instrument set.

Dynamic Panel Additional Robustness Checks

F-tests instrument power results

Dynamic Panel Additional Robustness Checks

- Check that estimates lie in expected range based on OLS and FE.
- Run F-tests of instrument power.
- Conduct robustness tests to instrument set.

Effect of Frailty on Earnings – Education

Robustness to instrument set

	Everyone	Everyone	Everyone
$\log(earnings_{t-1})$	0.676*** (0.110)	0.370 (0.319)	0.055 (0.264)
$\log(earnings_{t-2})$	0.050 (0.046)	0.318 (0.259)	0.632*** (0.210)
$frailty_t imes HSD$	-5.133*** (1.809)	-6.269*** (1.777)	-5.772*** (2.050)
$frailty_t imes HS$	-5.009*** (1.610)	-5.591*** (1.574)	-6.532*** (1.876)
$frailty_t \times CL$	-3.237** (1.313)	-2.519* (1.402)	-3.125* (1.743)
AR(2) test (p-value)	0.156	0.474	0.024
Hansen test (<i>p</i> -value)	0.022	0.132	0.116
Diff-in-Hansen test (p-value)	0.015	0.360	0.151
Diff-in-Hansen test (p-value), Y-lag set	0.053	0.516	0.516
Starting IV Lag t-k (k=)	3	4	5
Ending IV Lag t-k (k=)	4	5	6

Hosseini, Kopecky, and Zhao

Effect of Frailty on Earnings

	Everyone				Worke	rs
	(1)	(2)	(3)	(4)	(5)	(6)
$\log(earnings_{t-1})$	0.283 (0.364)	0.628** (0.291)				
$\log(earnings_{t-2})$	0.396 (0.298)	0.115 (0.239)				
frailty _t	-0.199*** (0.061)					
frailty $_t$ \times Young (age \leq 45)		-0.185*** (0.066)				
frailty _t × Old (age > 45)		-0.149^{***} (0.049)				

Similar effect for young and old

AR(1) test (p-value)	0.455	0.104	
AR(2) test (p-value)	0.380	0.949	0.057
Hansen test (p-value)	0.796	0.752	0.352
Diff-in-Hansen test (p-value)	0.652	0.464	0.192

Note:

 $^{*}p < 0.1; \ ^{**}p < 0.05; \ ^{***}p < 0.01$

Hosseini, Kopecky, and Zhao

Effect of Frailty on Hours - Young v. Old

	Eve	ryone	Wo	orkers
	(1)	(2)	(3)	(4)
$\log(hours_{t-1})$	0.399 (0.322)	0.669*** (0.257)	0.003 (0.345)	0.382 (0.318)
$\log(hours_{t-2})$	0.263 (0.257)	0.048 (0.206)	0.304 (0.218)	0.254 (0.246)
frailty _t	-0.144*** (0.044)		0.003 (0.009)	
$frailty_t \times Young \; (age \leq 45)$		-0.132*** (0.049)		-0.011 (0.014)
$frailty_t \times Old \; (age > 45)$		-0.116*** (0.035)		0.005 (0.010)
AR(1) test (<i>p</i> -value) AR(2) test (<i>p</i> -value) Hansen test (<i>p</i> -value) Diff-in-Hansen test (<i>p</i> -value)	0.287 0.596 0.971 0.944	0.043 0.706 0.811 0.545	0.409 0.273 0.060 0.080	0.180 0.642 0.051 0.037

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

Hosseini, Kopecky, and Zhao

Effect of Frailty on Wages of Workers - Young v. Old

	Wa	orkers
	(1)	(2)
$\log(wages_{t-1})$	0.212 (0.541)	0.511 (0.399)
$\log(wages_{t-2})$	0.532 (0.489)	0.272 (0.359)
frailty _t	-0.023** (0.010)	
$frailty_t \times Young$		$egin{array}{c} -0.041^{**} \ (0.017) \end{array}$
$frailty_t\timesOld$		-0.015 (0.011)
AR(1) test (p-value)	0.651	0.362
AR(2) test (p-value)	0.454	0.734
Hansen test (p-value)	0.085	0.170
Diff-in-Hansen test (p-value)	0.044	0.104
Note:	*p < 0.1; **p <	0.05; *** <i>p</i> < 0.01

Empirical literature on earnings/wealth/job loss impacts on health

- **Overview:** No evidence of changes in income/wealth/employment on objective measures of health. Mixed evidence of impacts on mortality/mental health/risky behavior.

"[A] preponderance of evidence suggests that in developed countries today, income does not have a large causal effect on adult health,...Once childhood health is set, the effect of economic resources on health diminishes. In most of adulthood, income and wealth no longer appear to have a large effect on health. Education continues to be a powerful determinant of health, but to a great extent because of its impact on behaviors rather than its association with resources. Exactly why education affects health behaviors remains unclear, but much of the story seems to hinge on the ability to process new information and to take advantage of new technologies." (Cutler et al., 2011 survey paper)

Papers: Adams et al. (2003), Adda et al. (2009), Apouey and Clack (2015), Black et al. (2015), Cesarini et al. (2016), Eliason and Storrie (2009), Evans and Moore (2011), Evans and Snyder (2006), Gathmann et al. (2021), Junna et al. (2020), Meer et al. (2003), Michaud and Soest (2008), Ostling et al. (2020), Raschke (2019), Schaller and Stevens (2015), Schwandt (2018), Smith (1999, 2004, 2007), Sullivan and Von Wachter (2009)

Problem of Young Nonemployed Individual at R-1

- Nonemployed individual with j = R - 1 solves

$$V^{N}(x, n_{a}) = \max_{c, a' \geq 0} u(c) + \beta p(j, f) E\left[\max\left\{V^{E}(x', 1), V^{R}(x')\right\}\right]$$

subject to

$$\frac{a'}{1+r} + c + m^N(j, f, s) = a + Tr(x, n_a)$$

Hosseini, Kopecky, and Zhao

Problem of a DI Beneficiary at R-1

- DI beneficiary with j = R - 1 solves

$$V^{D}(x, n_{d}) = \max_{c, a' \ge 0} u(c) + \beta p(j, f, s) E\left[V^{R}(x')\right]$$

subject to

$$\frac{a'}{1+r} + c + m^D(j, f, s, n_d) = a + SS(\bar{e}) + Tr(x, n_d).$$

- *n_d*: number of periods on DI.

▶ Go back

Hosseini, Kopecky, and Zhao

Problem of a Retiree

- Retiree solves

$$V^{R}(x) = \max_{c,a' \geq 0} u(c) + \beta p(j, f) E\left[V^{R}(x')\right]$$

subject to

$$\frac{a'}{1+r} + c + m^{R}(j, f, s) = a + SS(\bar{e}) + Tr(x)$$

Hosseini, Kopecky, and Zhao

Equilibrium

- Return on assets, r, is exogenously given (small open economy)
- There is an aggregate production function

$$Y = AK^{lpha}L^{1-lpha}$$

where *L* is aggregate labor input = sum of hours×productivity

- Wage per efficient unit of labor = marginal product
- Consolidated government budget holds with exog. purchases g
- All measures are stationary usual definition

Parametrization: Tax and Transfers

- Taxes includes
 - Proportional capital tax $au_{\mathcal{K}}$ paid by firm
 - Federal income tax HSV tax function
 - SS retirement & disability payroll tax statutory tax formula
 - Medicare payroll tax

$$T(e) = e - \lambda e^{1-\tau} + \tau_{ss} \min\{e, 2.47\bar{e}_a\} + \tau_{med}e$$

- Transfers include
 - SS retirement & disability benefit statutory benefit formula
 - SSI benefits to guarantee minimum DI payment \underline{b}
 - Welfare programs to guarantee minimum consumption floor \underline{c}

Estimation of Frailty Process: Deterministic Component

$$Prob(f_{ij} = 0) = \Phi(quad(age) + \nu_{ij})$$

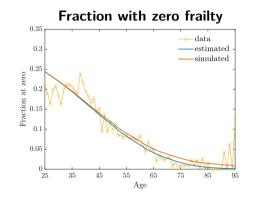
$$\begin{aligned} &\ln f_{ij} = quartic(age) + R_{ij}, \\ &R_{ij} = \alpha_i + z_{ij} + u_{ij}, \\ &z_{ij} = \rho z_{ij-1} + \varepsilon_{ij}, \end{aligned}$$

- Run OLS to remove time/sample duration effects
- Estimate zero frailty probit
- Estimate deterministic component of log frailty via SMM
- Calculate cohort-adjusted vars/covars of $R_{i,j}$
- Estimate process for $R_{i,j}$ using SMM
- Separate estimation for each educ group

	HS Dropout	HS Graduates	Col Graduates
age	1.26	0.988	0.999
	(0.095)	(0.030)	(0.064)
age^2	2.19	1.40	2.04
	(0.492)	(0.146)	(0.305)
age^3	-0.607	-1.39	-0.838
	(0.951)	(0.380)	(0.585)
age^4	3.03	8.77	3.05
	(0.636)	(0.307)	(0.403)
const.	-2.50	-2.57	-2.83
	(0.006)	(0.003)	(0.004)

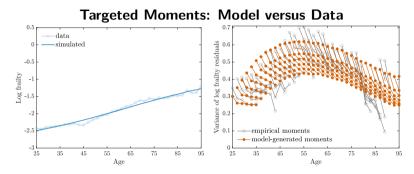
Estimation of Frailty Process: Deterministic Component

Note: age is scaled so that age = (age-25)/100.

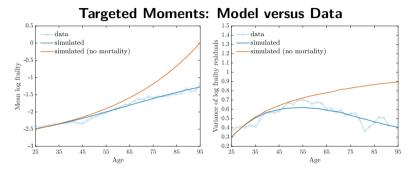

Estimation of Frailty Process: Stochastic Component results of estimating the shock process

HS Dropout	HS Graduates	Col Graduates
0.979	1.001	0.9690
(0.002)	(0.001)	(0.002)
0.2232	0.1542	0.1270
(0.0107)	(0.005)	(0.0050)
0.0368	0.0506	0.0357
(0.0039)	(0.002)	(0.0023)
0.0286	0.0162	0.0250
(0.0018)	(0.001)	(0.0012)
	0.979 (0.002) 0.2232 (0.0107) 0.0368 (0.0039) 0.0286	$\begin{array}{ccc} 0.979 & 1.001 \\ (0.002) & (0.001) \\ 0.2232 & 0.1542 \\ (0.0107) & (0.005) \\ 0.0368 & 0.0506 \\ (0.0039) & (0.002) \\ 0.0286 & 0.0162 \end{array}$

Hosseini, Kopecky, and Zhao

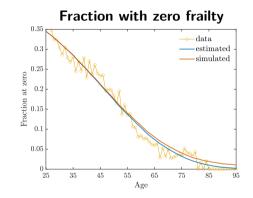

Stochastic frailty process for high school dropouts

- Mortality has little impact on the fraction at zero by age.


Stochastic frailty process for high school dropouts

- Deterministic age polynomial targets mean frailty by age in data.
- Stochastic component targets variance-covariance profile of frailty residuals.

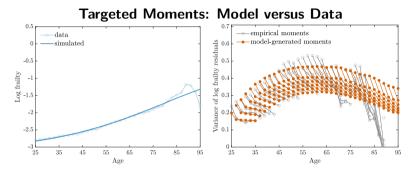
Stochastic frailty process for high school dropouts



- Effects of mortality on mean and variance of frailty are large at older age.

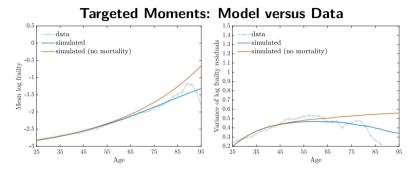
Hosseini, Kopecky, and Zhao

Stochastic frailty process for college graduates



- Mortality has little impact on the fraction at zero by age.

Hosseini, Kopecky, and Zhao


Stochastic frailty process for college graduates

- Deterministic age polynomial targets mean frailty by age in data.
- Stochastic component targets variance-covariance profile of frailty residuals.

Stochastic frailty process for college graduates

- Effects of mortality on mean and variance of frailty are large at older ages.

Calibration: What is done outside the model

- Utility parameters : γ and μ
- Technology parameters: capital share $\alpha,$ depreciation δ
- Job separation rate σ , return on asset r, pop. growth u
- Tax progressivity au, payroll tax rates (au_{ss} , au_{med}), capital tax au_K
- SS, SSDI, and SSI benefits, and minimum consumption \underline{c}
- The following processes
 - Stochastic processes for frailty and labor productivity
 - Out of pocket medical expenditures
 - Survival rates

Ex-ante parameters

Med exps and survival

Hosseini, Kopecky, and Zhao

How Important is Health Inequality for Lifetime Earnings Inequality?

65 of 95

Calibration: Predetermined Parameters

Parameter	Description	Values/source				
Demograph	Demographics					
J	maximum age	70 (94 y/o)				
R	retirement age	41 (66 y/o)				
ν	population growth rate	0.02				
Preferences						
γ	curvature of utility function	2				
μ	weight on consumption	0.5				
	(implies CRRA of 1.5)					
Job Separat	tion					
σ	annual layoffs/separations in JOLTS	0.15				
Technology						
α, δ, r	capital share, depreciation, return on assets	0.33, 0.07, 0.04				
Governmen	t policies					
au	tax progressivity (Guner et al (2014))	0.036				
$ au_{K}$	captial tax (Gomme and Rupert (2007)	0.3				
$\tau_{\rm ss}, \tau_{\rm med}$	payroll tax rates	0.124, 0.029				
<u>b</u>	SSI payment (% of ave. earning)	13				
<u>b</u> <u>c</u> G	minimum consumption (% of ave. earning)	11				
G	government purchases (% of GDP)	17.5				

Parametrization: Survival and OOP Med. Expenditure

- For survival: estimate (probit)

 $s_{ij} =$ quad. poly. on age + quad. poly. on frailty + edu + gender Dataset: HRS

- For out of pocket medical expenditures: estimate

 $oop_{ii} = cubic poly.$ on age + cubic poly. on frailty

separate for each edu. & labor market status. Dataset: MEPS

- Education: HSD, HSG, CG
- Labor market status: employed, non-employed and on Medicare, non-employed and not on Medicare

Hosseini, Kopecky, and Zhao

Estimating Productivity Profiles

Step 1: exclusion restriction

- Following Low & Pistaferri (2014) assume "potential" government transfers have different work disincentives for people w/ different health levels.
 - These effects are captured by interactions
- We regress participation on
 - log wage (1 and 2 lags), lag of frailty interacted educ., poly. on age, year dummies
 - interaction term: state \times # of kids \times marital status \times frailty
 - fixed effect
- We use estimated fixed effects in step 2

Estimating Productivity Profiles Step 2: bias correction

- Follow: Al-Saddoon, Jimenez-Martin, & Labeaga (2019)
- Run log wage on
 - 2 lags of log wage
 - edu. interacted w/quad. of lag of frailty (treated exogenous given our earlier findings)
 - age poly. + year dummies
 - fixed effects estimated in step 1

▸ Go Back

Estimating Productivity Profiles

Estimation of frailty effect

	Lin	ear	Quad	ratic
	w/o correction	w/ correction	w/o correction	w/ correction
$\log(wage_t - 1)$	1.044***	1.034***	1.039***	1.024***
	(0.298)	(0.295)	(0.298)	(0.295)
$\log(wage_t - 2)$	-0.263	-0.262	-0.265	-0.259
	(0.270)	(0.262)	(0.268)	(0.260)
frailty _t \times HSD	-1.128**	-1.201**	-1.952**	-2.056**
	(0.453)	(0.469)	(0.900)	(0.923)
frailty ² × HSD			3.477*	3.555*
			(1.999)	(2.018)
frailty _t \times HSG	-0.662***	-0.741***	-1.048**	-1.173**
	(0.235)	(0.251)	(0.441)	(0.467)
frailty ² \times HSG			1.658	1.810*
<i></i>			(1.015)	(1.037)
$frailty_t \times COL$	0.052	0.025	0.397*	0.358*
	(0.119)	(0.119)	(0.223)	(0.217)
frailty ² \times COL			-2.058**	-2.071**
			(0.843)	(0.834)
selection term		0.076**		0.090**
		(0.035)		(0.038)
Observations	23,874	23,755	23,874	23,755
AR(2) test (p-value)	0.182	0.163	0.182	0.163
Hansen test (p-value)	0.107	0.096	0.107	0.096
Diff-in-Hansen test (p-value)	0.307	0.417	0.307	0.417

Hosseini, Kopecky, and Zhao

How Important is Health Inequality for Lifetime Earnings Inequality?

▶ Go Back ▶ Exog Robust

70 of 95

Estimating Productivity Profiles Steps 3 and 4: estimating shock process

- Using results in step 2, remove effect of frailty
- Run the remainder (separate for college and non-college) on
 - quadratic in age
 - year dummies
- Estimate age profile for 25-49 using PSID and 50+ using HRS
- Back out residuals
- Estimate a RIP process for residuals using GMM and PSID

Hosseini, Kopecky, and Zhao

Estimating Productivity Profiles

Step 3: Deterministic component estimates

	Ages	5 25-49	Ages 50+		
	Non-college	Col Graduates	Non-college	Col Graduates	
age	0.050	0.092	0.080	0.006	
	(0.003)	(0.005)	(0.018)	(0.029)	
age^2	-0.0005	-0.0009	-0.0008	-0.0002	
	(0.0004)	(5.2e-6)	(0.0001)	(0.0002)	
constant	1.878	1.196	1.224	3.932	
	(0.075)	(0.108)	(0.574)	(0.924)	

Estimating Productivity Profiles

Step 4: Shock process estimates

Non-college	Col Graduates
0.0824	0.0985
(0.0115)	(0.0122)
0.0165	0.0181
(0.0049)	(0.0059)
0.0920	0.1254
(0.0145)	(0.0234)
0.9218	0.9730
(0.0231)	(0.0114)
	0.0824 (0.0115) 0.0165 (0.0049) 0.0920 (0.0145) 0.9218

Hosseini, Kopecky, and Zhao

Comparison with Low & Pistaferri (2014)

- Low & Pistaferri (2014) estimate the effect of disability on wages for non-college men.
- They have three disability groups d=0,1,2
 - d = 0: those with no work limitation
 - d = 2: those with severe work limitation
 - d = 1: the rest
- We calculate mean frailty for each of these categories in our sample
 - d = 0 has mean frailty of 0.07
 - d = 1 has mean frailty of 0.18
 - d = 2 has mean frailty of 0.28
- Using these values and our estimated coefficients, we can compute effects that are comparable to Low & Pistaferri (2014)

Hosseini, Kopecky, and Zhao

Comparison with Low & Pistaferri (2014)

Table: Effect of work limitation on wages (% decline in wages relative to no limitation)

	mean	Low & Pistaferri (2014)	Our estimation			
	frailty	non-college	non-college	HSD	HSG	College
No limitation	0.07					
Moderate limitation	0.18	-5.7	-9.0	-13.1	-8.1	-5.7
Severe limitation	0.28	-17.7	-18.0	-26.1	-16.1	-13.8

- Note Low and Pistaferri's estimates are based on non-college sample only.

▸ Go Back

Robustness to Exogenous Frailty

Estimation of frailty effect (men only)

	ENDOGENOUS No Correction	ENDOGENOUS stateXkidsXmar	ENDOGENOUS +Xfrail	EXOGENOUS No Correction	EXOGENOUS stateXkidsXmar	EXOGENOUS +Xfrail
$\log(wage_t - 1)$	0.863*** (0.172)	0.859*** (0.170)	0.853*** (0.170)	1.044*** (0.298)	1.043*** (0.296)	1.034*** (0.295)
$\log(wage_t - 2)$	-0.093 (0.158)	-0.091 (0.161)	-0.088 (0.159)	-0.263 (0.270)	-0.274 (0.264)	-0.262 (0.262)
frail_hsd (one add. deficit)	-0.037 (0.024)	-0.039 (0.024)	-0.039 (0.024)	-0.042** (0.017)	-0.044** (0.017)	-0.044** (0.017)
frail_hsgp (one add. deficit)	-0.019 (0.018)	-0.026 (0.020)	-0.026 (0.019)	-0.025*** (0.009)	-0.027*** (0.009)	-0.027*** (0.009)
frail_col (one add. deficit)	0.000 (0.021)	-0.003 (0.022)	-0.002 (0.021)	0.002 (0.004)	0.001 (0.005)	0.001 (0.004)
eta		0.038 (0.152)	0.059 (0.141)		0.046 (0.032)	0.076** (0.035)
Controls	YES	YES	YES	YES	YES	YES
Observations	23,874	23,755	23,755	23,874	23,755	23,755
AR(1) test (p-value)	0.000	0.000	0.000	0.010	0.008	0.009
AR(2) test (p-value)	0.195	0.183	0.189	0.182	0.152	0.163
Hansen test (<i>p</i> -value)	0.228	0.169	0.172	0.107	0.096	0.096
Diff-in-Hansen test (<i>p</i> -value)	0.370	0.324	0.356	0.307	0.385	0.417
Diff-in-Hansen test (p-value), Y-lag set	0.122	0.070	0.079			
Starting IV Lag t-k (k=)	5	5	5	5	5	5
Ending IV Lag t-k (k=)	7	7	7	7	7	7

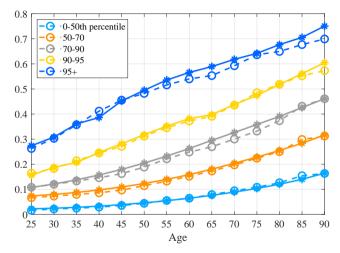
* p < .1, ** p < .05, *** p < .01

Hosseini, Kopecky, and Zhao

Robustness to Exogenous Frailty Estimation of quadratic frailty effect (men only)

	ENDOGENOUS No Correction	ENDOGENOUS stateXkidsXmar	ENDOGENOUS +Xfrail	EXOGENOUS No Correction	EXOGENOUS stateXkidsXmar	EXOGENOUS +Xfrail
$\log(wage_t - 1)$	0.749*** (0.157)	0.738*** (0.156)	0.734*** (0.155)	1.039*** (0.298)	1.032*** (0.295)	1.024*** (0.295)
$\log(wage_t - 2)$	0.007 (0.141)	0.018 (0.140)	0.020 (0.139)	-0.265 (0.268)	-0.270 (0.261)	-0.259 (0.260)
frail_hsd	-1.923 (2.617)	-2.660 (2.387)	-2.584 (2.371)	-1.952** (0.900)	-2.051** (0.931)	-2.056** (0.923)
frail_hsd_sq	3.631 (6.762)	4.883 (6.075)	4.682 (6.037)	3.477* (1.999)	3.576* (2.049)	3.555* (2.018)
frail_hsgp	-1.101 (1.428)	-1.931 (1.346)	-1.880 (1.346)	-1.048** (0.441)	-1.153** (0.463)	-1.173** (0.467)
frail_hsgp_sq	2.891 (4.364)	4.634 (4.039)	4.515 (4.066)	1.658 (1.015)	1.785* (1.038)	1.810* (1.037)
frail_col	0.902 (1.198)	0.434 (1.148)	0.490 (1.150)	0.397* (0.223)	0.377* (0.228)	0.358* (0.217)
frail_col_sq	-4.486 (3.189)	-3.831 (2.966)	-3.912 (3.032)	-2.058** (0.843)	-2.095** (0.855)	-2.071** (0.834)
eta		0.114 (0.155)	0.132 (0.147)		0.061* (0.033)	0.090** (0.038)
Controls	YES	YES	YES	YES	YES	YES
Observations	23,874	23,755	23,755	23,874	23,755	23,755
AR(1) test (p-value)	0.000	0.000	0.001	0.010	0.009	0.009
AR(2) test (p-value)	0.452	0.463	0.471	0.178	0.155	0.166
Hansen test (p-value)	0.347	0.339	0.347	0.107	0.096	0.096
Diff-in-Hansen test (p-value)	0.200	0.233	0.251	0.309	0.403	0.435
Diff-in-Hansen test (p-value), Y-lag set	0.051	0.039	0.042			
Starting IV Lag t-k (k=)	5	5	5	5	5	5
Ending IV Lag t-k (k=)	7	7	7	7	7	7

* p < .1, ** p < .05, *** p < .01


Hosseini, Kopecky, and Zhao

Capturing severe disability

- Productivity process doesn't capture the effects of severe lifelong disability.
- To capture these effects we assume:
 - individuals face small probability of being born severely disabled (having zero productivity)
 - probability depends on frailty and education
 - pinned down by the fractions of 25 year-olds on SSI/SSDI in the data (2.3% overall)

Frailty: Model vs Data

- Frailty process in model generates mean frailty levels by age and percentile groups that align closely with those in the data.

Hosseini, Kopecky, and Zhao

Assessment: DI and LFP by Education Groups

DI recipiency rate (%), ages 25–64					
	HS Dropout	HS Graduates	Col Graduates		
Data	11.8	6.6	2.7		
Model	12.3	7.4	2.6		

LFPR (%), ages 25–64HS DropoutHS GraduatesCol GraduatesData788794

86

94

- The model matches levels and patterns of DI recipiency and LFP by education.

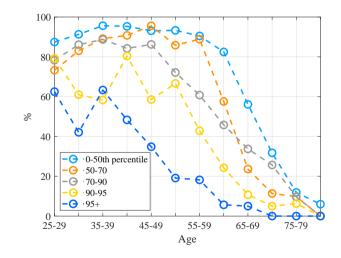
76

Hosseini, Kopecky, and Zhao

Model

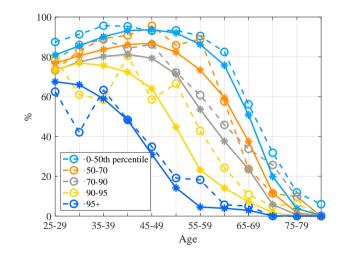
Calibration: What is Chosen to Match Targets

- Prob. of DI acceptance parameters: $\theta(f, n_a) = \min \{1, \kappa_0 f^{\kappa_1} n_a^{\kappa_2}\}$
 - Targets:
 - SSDI enrollment by frailty percentiles and 5-year age group (ages 25-64)
 - Rate of decline in DI acceptance by year since initial application (French and Song, 2014)
- Disutility of work parameters: $v(f) = \phi_0 + \phi_1 f^{\phi_2}$
 - Targets: LFP by frailty percentiles for age group 25 to 74.
- Discount factor β
 - Target: wealth to output ratio of 3.2.
- Average tax parameter λ
 - Target: federal income tax as % of GDP = 8%.

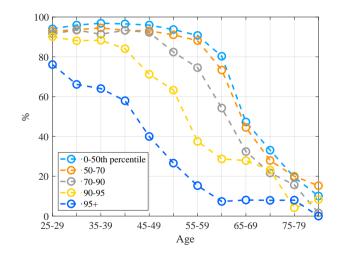

Calibration: Parameters Chosen using the Model

Description		Value
discount factor		0.982
HSV tax parameter		0.908
Moment		Model
Wealth-output ratio		3.2
Federal Inc. Tax (% of GDP)		
	discount factor HSV tax parameter put ratio	discount factor HSV tax parameter Target out ratio 3.2

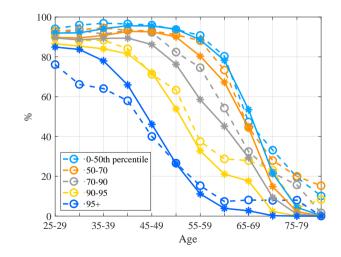
Table: Additional Parameters and Targets: Values



Assessment: LFP by Frailty and Age High School Dropouts: Model vs Data

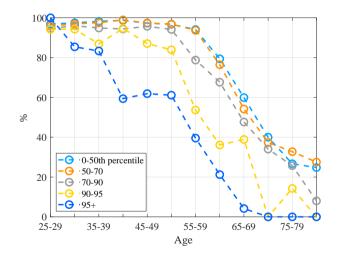

Hosseini, Kopecky, and Zhao

Assessment: LFP by Frailty and Age High School Dropouts: Model vs Data


Hosseini, Kopecky, and Zhao

Assessment: LFP by Frailty and Age High School Graduates: Model vs Data

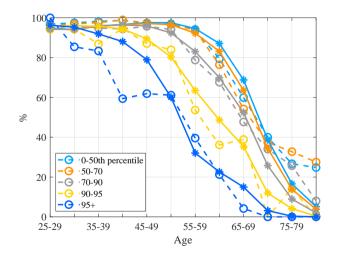
Hosseini, Kopecky, and Zhao


Assessment: LFP by Frailty and Age High School Graduates: Model vs Data

Hosseini, Kopecky, and Zhao

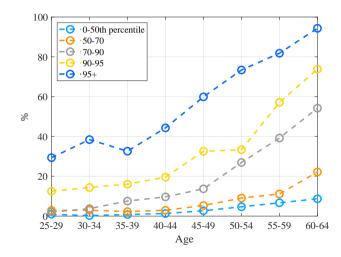
Assessment: LFP by Frailty and Age

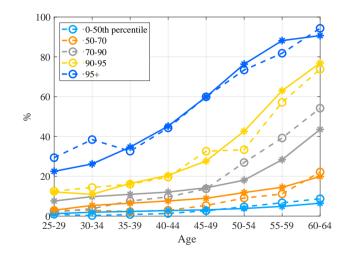
College Graduates: Model vs Data



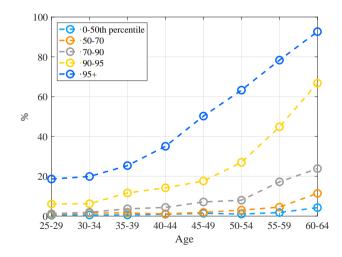
Hosseini, Kopecky, and Zhao

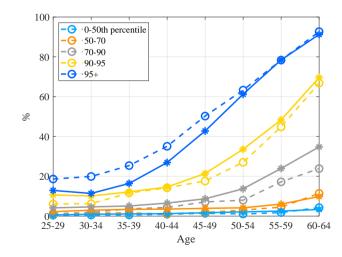
Assessment: LFP by Frailty and Age

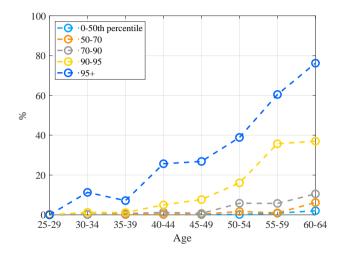

College Graduates: Model vs Data



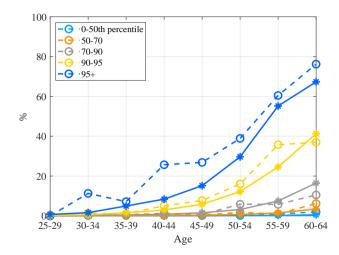
Hosseini, Kopecky, and Zhao


Assessment:% on DI by Frailty and Age High School Dropouts: Model vs Data


Assessment:% on DI by Frailty and Age High School Dropouts: Model vs Data

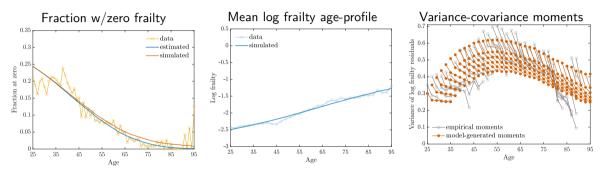

Assessment:% on DI by Frailty and Age High School Graduates: Model vs Data

Assessment:% on DI by Frailty and Age High School Graduates: Model vs Data


Assessment:% on DI by Frailty and Age College Graduates: Model vs Data

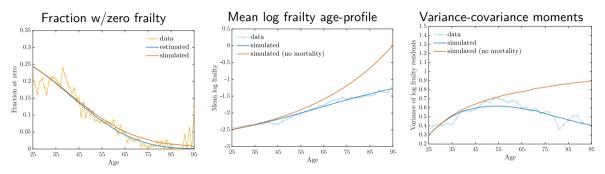
Hosseini, Kopecky, and Zhao

Assessment:% on DI by Frailty and Age College Graduates: Model vs Data

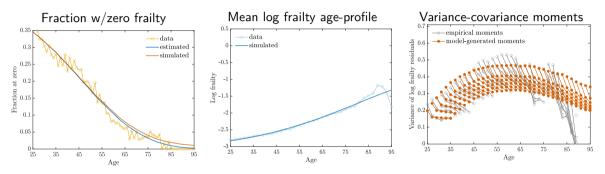

Hosseini, Kopecky, and Zhao

Sample Details

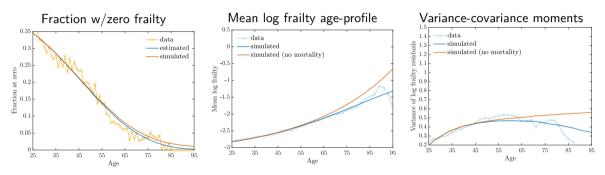
- Use PSID 2003-2017 (years 2002-2016)
 - Cannot construct frailty index in earlier waves.
- Sample consists of household heads and spouses aged 25–64 with non-missing labor earnings.
- Workers are defined as follows:
 - $LF_t = 1$ if hours \geq 260 AND wages > \$3/hour
 - Worker = 1 if $LF_t = 1$ for all time periods observed
 - Wages = Annual labor earnings/Annual hours worked
 - Annual hours worked = (52 weeks unemployed) imes average weekly hours
- Good/Bad health: frailty below/above 75th percentile


▶ Go Back

Stochastic frailty process for high school dropouts



Stochastic frailty process for high school dropouts



Stochastic frailty process for college graduates

Stochastic frailty process for college graduates

Why use frailty index?

- 1. Need objective measure of health to study health-contingent policies.
- 2. Easy to construct, univariate, and highly predictive of health-related outcomes: mortality, nursing home stay, DI recipiency, medical expenditures.
- 3. Better than self-reported health at predicting decline in health with age.
- 4. Cardinal and measures health on a fine scale \rightarrow we can observe variation in the unhealthy tail and its effects.
- 5. Can be treated as continuous variable \rightarrow useful for estimating marginal effects.
- 6. Consistent measure of health across multiple datasets: PSID, MEPS, HRS.

graph

Image: Go Back

Related Literature

- Impact of health on labor supply/earnings: Bound et al. (1999), Blundell et al. (2017), French (2005), Garcia-Gomez et al. (2013), Lenhart (2019).
- SSDI and disability: Aizawa et al. (2020), French and Song (2014), Kitao (2014), Low and Pistaferri (2015), Meyer and Mok (2019), Michaud and Wiczer (2017).
- Health and inequality and income distribution: Capatina (2015), Capatina et al. (2020), Kim and Rhee (2020), O'Donnell et al. (2015), Prados (2017).
- Frailty index: Dalgaard and Strulik (2014), Hosseini et al. (2021), Schunemann et al. (2017a, 2017b), Searle et al. (2008).
- Impact of income/employment/wealth on health: Adda et al. (2009), Cutler et al. (2011), Junna et al. (2020), Smith (1999, 2004, 2007), Schaller and Stevens (2015).
- Dynamic panel estimation: Blundell and Bond (1998), Blundell and Bond (2000), Arellano and Bond (1991), Arellano and Bover (1995), Al-Sadoon et al. (2019), Bond (2002), Roodman (2009).
- Health and savings: De Nardi et al. (2010), Kopecky and Koreskhova (2014), Porterba et al. (2017), Scholz and Seshadri (2013).
- Welfare costs of bad health: Cole et al. (2018), De Nardi et al. (2017), Rios-Rull and Pijoan-Mas (2019).

► Go Back

Calibrated Values

Parameter	Description	Value
κ_0	level	179
κ_1	elasticity w.r.t. frailty	5.9
κ_2	elasticity w.r.t. 'number of attempts'	0.6
ϕ_0	level	0.64
ϕ_1	frailty level effect	2.8
ϕ_2	elasticity w.r.t frailty	5.5

- DI probability $\theta(f, n_a) = \min \{1, \kappa_0 f^{\kappa_1} n_a^{\kappa_2}\}$ increases in frailty and number of years since initially applied.
- Disutility from working $v(f) = \phi_0 + \phi_1 f^{\phi_2}$ is increasing and convex in frailty.

DI Applicants in the Model

Table: Fraction of individuals non-employed for 1 year who are working 3 years later in the benchmark economy

All			By frailty level		
Age		frailty > 0.1	frailty > 0.2	frailty > 0.3	
25–65	31.9	30.8	27.7	24.6	
35–64	28.5	27.8	26.3	23.2	
45–64	26.2	25.9	24.7	21.2	

- We assume those with frailty > 0.1 are DI applicants:
 - probability of getting DI is less than 0.1% if frailty below 0.1
 - under this assumption 50% of applicants successfully obtain DI one year after application consistent with estimated fraction in data (French & Song, 2014).
- Assumption doesn't have that big an impact on labor force participation rates.